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Introduction

This article deals with Brownian motion (classical diffusion) in mhomogeneous media It mamly
concentrates on cases 1n which the inhomogeneities can be modelled as a quenched disorder on the
local hopping rates (“‘geometrical disorder” amsing 1n fractal structures as the percolation network 1s
also briefly considered, 1n chapter 6)

Besides the observation that Brownian motion 1s one of the classical and best understood problems
of physics and that studying 1ts behaviour 1n the presence of disorder 1s quite natural, there are several
physical phenomena motivating this study. These are mainly transport processes, ¢ g. the diffusion of a
tracer in inhomogeneous hydrodynamic flows under the combmed action of molecular diffusion and
convection along the flow lines (porous media, section 5 6, turbulent flow, section 4 121, array of
convection rolls section 1.2.3 4), or the diffusion of a charge carner (electron, hole, 10n) n a conductor
with impunties in regimes where conduction can be modelled as a classical process mvolving
independent carrers (sections 5.4.2 and 5.4 3)

Another type of motivation, perhaps more remote, has to do with relaxation properties of disordered
systems (e.g random field magnets or spin glasses) This 1s for at least two different reasons Furst,
because important processes contributing to the overall dynamics—like domain wall or defect motion—
are diffusion processes (see section 3.3.7). Second, because relaxation can be traced back to the
diffusion properties i the configuration space of the system, which 1s indeed known to have a
complicated structure for, e g , spin glasses. While the study of a random walk 1n a disordered energy
landscape (section 4 1.2.2) 1s certainly a very crude cancature of such a process, it can be a first,
question raising attempt to deal with the effect of disorder on dynamical properties

While this article 1s primarily a theoretical one, an effort will be made to motivate the models by
discussing 1 some detail several physical situations and experiments

The disorder can have two kinds of effects on diffusion properties:

—1t may affect only the value of the transport coefficients (velocity, diffusion constant, etc.) as
compared to the ordered system,

—or 1t may alter in various ways the very laws of Brownian motion (e g. the mean-square position may
no longer increase hinearly in time at large times).

We shall be mainly concerned here with “anomalous diffusion” phenomena, where the second kind
of effect takes place Since the usual laws of Brownian motion result from the central imit theorem of
probability theory, the usual form of the latter has to fail whenever anomalous diffusion occurs. As will
be illustrated at length 1n chapter 1, this can be due to the presence of either “broad distributions” (with
diverging first or second moment) or of “long-range” correlations These statistical mechanisms can be
present a priori in the problem at hand for some underlying physical reason (e g long-range
correlations 1n the veloaity field of a turbulent flow) or, most interestingly, they can be induced by the
dynamucs itself (see, €.g., section 3 3). It 1s one of the main themes of this article to unveil the presence
of one (or both) of these mechamsms 1n all the models and physical situations described Identifying
these statistical mechamsms provides us with a unified framework; this 1s indeed most useful both for
model building (when looking for the physical ongin of some observed anomalous diffusion) and for
analyzing models without resorting to ponderous theoretical apparatus.

Such situations, 1n which the disorder has such strong consequences, also require specific techmques.
In particular, all mean-field types of approach (e g effective-medium approximations) which attempt to
replace the disordered system by an equivalent ordered one following some averaging techmque, can
only fail when anomalous diffusion takes place Indeed, viewing 1n the usual way the large-time limit of
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a random walk as a critical phenomenon, 1t appears that anomalous diffusion does correspond to
departure from mean-field behaviour a non-trivial fixed poimnt appears, corresponding to a non-
Gaussian central limit theorem (sections 4 2 2 3 and 4.3.1). Besides, as for any physical effect specific of
disorder, attention should be paid to the question of ensemble averaging and of sample to sample
fluctuations, random walks in random media provide a remarkable example of problems in which both
fixed environment and disorder-averaged properties have a direct physical meaning (corresponding to
the study of an mitial distribution of walkers imtially concentrated or spread out over the sample,
respectively) For these reasons, among others, diffusion i disordered media provides an interesting
test field for methods 1n the theory of disordered systems

In addition to the general tools of probability theory, several more specific analytic techniques will be
reviewed 1 some detail in this article This encompasses mainly Green function and steady-state
methods 1n one dimension (where a number of exact results can be obtained) and renormalization
group methods 1in higher-dimensional cases The probabilistic meaning of the latter will be emphasized.

As the list of references testifies, diffusion in mhomogeneous media has been the subject of
numerous works 1n the past ten years and 1s still quite an active field Two review articles have recently
appeared {G12, G13] and the present one 1s meant to be complementary to both, with very limited
overlap The one by Havlin and Ben Avraham [G12] concentrates on fractal structures rather than on
quenched disorder (with relative weights roughly mnverted as compared to the present paper), and the
article by Haus and Kehr [G13] focusses on situations in which diffusion 1s normal. An older review
article by Alexander et al [G10] dealt only with the case of symmetric random barriers 1n one
dimension Most analytical methods (Iike the Green function and steady-state techmques of chapter 3
for the general asymmetric case 1n one dimension, and the renormalization group methods of chapter 4)
have never been reviewed. Besides, the present article contains new results which have not been
published elsewhere It 1s also intended to discuss several physical motivations and experiments, which
has not been attempted before

The present paper should thus not be considered as a review article 1n the usual sense It 1s intended
to provide an ongmal view of the field in a umfied language, and as such certainly suffers from
numerous omissions The following topics 1n particular will deliberately not be addressed:
—most situations m which the inhomogeneities are neither modelled as quenched disorder nor as
fractal-type (geometrical) disorder; this encompasses mainly the cases with *‘determinustic disorder” like
diffusion on hierarchical structures or with hierarchical transition rates (see, e.g , [Hub85, Gro85,
Pal85, Tei85, Bah87] and references therein), or diffusion 1n the phase space of dynamical systems (with
the exception of the Lorentz gas of section 1 2 2 1 and the intermittent system of section 1.2.3 3); these
are subjects which by themselves would deserve an independent paper,
- nteractions among the diffusing particles are always neglected,
— all problems 1n which the total probability 1s not conserved, like, e.g., diffusion among infinitely deep
traps (see [Don79, Gra82, N1e89]) or in the presence of chemical reactions;
—the effects of possible quantum mechanical couplings between the diffusing particle and the im-
purities, leading to entirely new physics,
— finally, the paper 1s restricted to the diffusion of pointlike particles (maybe with the exception of
dislocation motton 1n section 3.3.7 3); 1t would probably be premature to attempt a review of the still
growing number of studies of the diffusion of hnes (polymer reptation, DNA chan mn a gel, etc ) or
interfaces (domain wall motion, etc.) 1n the presence of disorder and of the new effects (pinning, etc.)
induced by the mternal structure.

Let us end this introduction by providing some guide to the reader through this article. It 1s divided
n six chapters, the detailed contents of which can be found 1n the table of contents. It should be clear
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from this table of contents that many sections can (and must) be bypassed 1n a first reading. Indeed, the
paper 1s organized as a main “‘backbone”, along which numerous illustrative physical examples branch
off Smaller characters have been used to mark these sections Chapter 1 1n particular 1s meant to be a
general introduction to the maimn probabilistic concepts and mechamsms' the numerous examples it
contamns deal with anomalous diffusion but not with media with quenched disorder. The study of the
latter begins with chapter 2 For the sake of convemence, an index can be found at the end of the
article

1. Statistical mechanisms. Broad distributions and long-range correlations

“In fact, all epistemologic value of the theory of probability 1s
based on this that large-scale random phenomena 1n their collective
action create strict, non random regulanty

BV Gnedenko and A N Koimogorov, Limit Distnibutions for Sums
of Independent Random Vanables [G2]

This chapter should be considered as a general mtroduction to the probabilistic concepts that will be
used throughout this article It is meant to illustrate the idea which pertans to all the problems
discussed in this article, namely that anomalous diffusion phenomena correspond to physical instances
n which the central limit theorem (CLT) no longer holds in its usual form. This 1dea 1s indeed useful 1n
practice: Once the statistical mechanisms responsible for this unusual circumstance are 1dentified, very
simple statistical arguments (or even precise mathematical results) can often be used in order to
understand how the resulting diffusion behaviour 1s modified. Several illustrations will be given in this
chapter Most of them do not deal, strictly speaking, with disordered media (except section 1 3 2); this
1s the subject of the following chapters (2-6).

In section 1.1, very elementary properties of random walks and Brownian motion are discussed
These properties follow from the CLT in 1ts usual form (see, e g, ref. [G1]), which apphes in an
overwhelming majonty of cases, that 1s, provided the two following conditions are satisfied (stated here
in a somewhat loose way, to be made precise later on)

(1) The distribution of the summed random variables must not be *‘too broad” (a sufficient condition
1s, in particular, the finiteness of its second moment)

(ii) These random variables must not be “long-range correlated’.

We study 1n the two following sections the situations 1n which one of these conditions 1s not satisfied,
(1) in section 1.2, (u) 1n section 1.3, making use, whenever possible, of simple statistical reasonings. The
first case, involving “broad” distributions, 1s well understood: The works of P. Levy and A Khintchine
in the 1930s [G1-G3] have shown how to extend the CLT to such situations A summary of these
mathematical results 1s given in appendix B, while several physical illustrations are presented in the
text No such general understanding 1s available in the case of strongly correlated random variables
(section 1 3) This 1s indeed a very difficult question- a self-avoiding walk (polymer) or the physics of
critical phenomena are examples of such a situation, as will be made clear in sections 133 and 134

1.1. Random walks, normal diffusion and the central limit theorem

Let us first consider the very simple one-dimenstonal example of a walker performing at each time n
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a Jjump of length /, independently chosen at each time according to a given distnibution p(/) Its position
after N steps, 1€ at time ¢ = N7, 1s the sum of N independent displacements,

N
X=21, (11)
n=1

Provided the first two moments (/) and (I°) of p(/) are finite, the mean and the variance of the
position depend linearly on time,

— —t —

X=Vt, X' -X =2Dt, (12)

I I3

where the velocity and the diffusion constant are given by
v=_l)/r, D=7 () -(1)’] (13)

This 1s the well-known behaviour of (biased) Brownian motion, which we shall call ‘‘normal
diffusion” throughout this article We shall speak of “anomalous diffusion” (of ‘‘anomalous drift”)
whenever the variance of the position X, (its average) no longer increases linearly with time at large
time

A more precise characterization of the random walk (1.1) 1s provided by the CLT, which states that,
when the above conditions are satisfied, the distribution of the position X, (“diffusion front™) takes at
large times a Gaussian (or “‘normal”) form,

1 e
Probability{u, = (X, - V1)12VDt = u,} — f et d¢ (14)
Uy

Let us sketch an elementary derivation of this classical result in probability theory (see, for example,
ref. [G1]) which, 1n this form, goes back to Laplace (1812) [G9] Up to a translation of the reference
frame, one can always suppose that (/) =0 X, then behaves typically as N''? and it 1s the distribution
of the variable X,/V'N which admits a limiting form This distribution reads

[ T pyan, s - v 30 (15)

Using an 1ntegral representation of the &-function, this can be written as

_1_ ’ ler/\/I_Vf —lkl/\/N)N
277[ dke ( dlp(l)e (16)

This expression mvolves the Fourter transform (or *‘charactenstic function) p(k) of p(I) At large
times, only the behaviour of p(k) close to k =0 matters, since | p(k)| <1 Since

PIVNY = [L= H(PYEIN+O(N )= e 02 (17)

the integration over k leads to the Gaussian form (1 4)
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This derivation calls for several important remarks:

(1) At large times, the imut distribution (1 4) mvolves only the first two moments (/) and (I*) All
further details of the structure of p(!) (higher-order moments, etc ) only contribute outside the scaling
region 1n which (1 4) holds. Indeed,

(1) the CLT only specifies the limit distribution within the scaling region, where the varnable
(X, — Vt)/V Dt takes finite values, corresponding to typical values of X,. Outside this region, the limit
distribution P(X, t) will generally have tails which are not described by (1 4). These tails can be called
“non-umversal”’, since they depend on all the details of the ongmnal distribution p(l). (The case where
the jumps take the two values /, = =1 with equal probability 1s a simple 1llustration of this pomnt 1n this
case the exact distribution 1s a binomial law). An explicit characterization of the difference between the
limit distribution and a normal law for large but finite time 1s provided by the Chebyshev expansion m
powers of 1/Vt, which mvolves the higher-order moments of p(/) and 1s described 1n appendix B

() A natural question to be asked 1s to characterize all the distributions p(!) for which the limit
distribution of the sum X, conveniently rescaled 1s the normal law or, in other words, to identify the
“attraction basin” of the normal law. Theorem 1 of appendix B answers this question completely. The
finiteness of the second moment {/*) 1s 1n fact not a necessary condition As an example, the attraction
basin of the normal law contamns the distributions p(l) decreasng as [~> for large [, for which
(I’y =+% X7 1s then typically of order fln¢ We shall see in the next section (1 2.2.1) a physical
application of this result

(1v) Let us finally note that the large-time hmut for a random walk can be seen as a crtical
phenomenon. This 1s clear from the above remarks: small number of relevant parameters, universal
scaling law for the limit distribution within a certamn attraction basin, etc It 1s the inverse of the time ¢
(or more precisely E, 1ts conjugate parameter by Laplace transform) which plays the role of the distance
T - T, to the critical temperature. The typical position X, 1s to be interpreted as a correlation length
£(t) (diverging for normal diffusion with the mean-field exponent » = 1/2), and the distribution P(X, 1)
as a correlation function (S(0)S(X)), (see section 42.2.3 and table 4.1 for elaboration on this
equivalence)

The CLT can be readily generalized to random walks on regular lattices of arbitrary dimensionahty
(see appendix A) Since only the vicimty of k = 0 is of any importance, as in the above derivation, the
asymptotic form of P(X, t) keeps no trace of the underlying lattice structure In a suitably normalized
basis of umit vectors, this asymptotic form 1s a simple d-dimensional generalization of (1.4),

P(X, t)— (47 Dt)" " exp[—(X — Vt)*/4D1] . (1.8)

Some properties of random walks (distribution of first passage times, number of different sites
visited, etc ) will play an important role in the following - as well as some analytical tools needed to
derive them (master equation, generating functions, etc.) Since these are standard topics which can be
found 1n several excellent books and review articles (e.g. refs [G5-G9]), they will not be further
detailed here. Rather, for the sake of convemence, some of these properties and techniques are briefly
presented in appendix A.

The normal form of the CLT presented in this section apphes provided the random vanables which
are summed satisfy the two conditions already mentioned at the beginning of this section (not too broad
distnibution or too long-ranged correlations). Anomalous diffusion arises whenever one of these
conditions 1s not satisfied. This may of course result from some “ad hoc” hypothesis of the model at
hand. But the physically most interesting situations are those in which such “pathologies” are induced



136 J -P Bouchaud and A Georges. Anomalous diffusion in disordered media

by the dynamics itself This 1s the case for almost all physical situations dealt with i the following. It 1s
amusing, for example, to realize that a broad distribution 1s n fact induced 1n such a famihiar problem
as the one-dimensional unbiased Brownian motion. Indeed, the distribution of the first return time to
the origin decays as (cf appendix A)

P(t)~t7" (for V=0), (19)

and P, has an nfinite mean value! This 1s at the origin of geometry-induced anomalous diffusion on
comb-like structures, as explained 1n section 1.2.3 (see also section 6 3 3)

12 The central limit theorem for broad distributions and physical applications

“All these distribution laws, called stable, () deserve the most
serious attention It 1s probable that the scope of applied problems 1n
which they play an essential role will become 1n due course rather
wide

BV Gnedenko and A N Kolmogorov (op cit)

1.2 1. Sums of independent random variables; stable laws
1211 General theory The problem considered in this section 1s to characternize the hmit
distribution of the sum of independent random variables,

N
Xy=21, (1 10)
n=1

when the distribution p(/) 1s “broad” (that 1s, decreases more slowly than /> for large /)

This question 1s a classic 1n the theory of probability It has been answered by Levy and Khintchine
[G3], who gave an exhaustive classtfication of the possible limit distributions, based on the requirement
of stability under convolution This 15 beautifully reviewed and developed m Gnedenko and Kol-
mogorov’s book [G2] A summary of the most useful mathematical results 1s given in appendix B of this
article. We give here a quahtative presentation of therr meaning based on simple statistical arguments.

Let us suppose that p(/) decreases for large [ as /™" " (with u >0 to allow normahzation) Then:
-For 0 <u <1, X, behaves typically as N '# (or as NIn N if w =1). Note that (/) 1s infimite i this
case. and so 18 X, ~ _

-For 1<pu <2, (I) 1s fimte and X, = (/) N, while the difference between X, and X, agan behaves
typically as N''* (or as VN In N for u =2). Note that the variance X3 — X 1s still infimte
—For p>2. (I’) 1s fimte and this leads back to the situation of the previous section

Stated more precisely the varable Z, = X,/N'™* for 0< u <1 [or (X, — (IYN)/N""* for 2> u > 1)

has a limit distribution when N— <, 1n the same sense as eq (1 4), namely

u

Prob(u, < Z, < uz)mf L, ,(u)du (111)
“1

The limit distributions L, , are defined by their characteristic functions [eq (B 8) of appendix B],
they are called Levy (or “stable”) laws of index p Up to translations and dilatations, they are fully
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characterized by the two parameters pu and 8 (0<u <2, —1=pg=<1). The latter characterizes its
degree of asymmetry [which depends on the relative frequency of occurrence of large positive and
negative increments n the sum (1.10)]. More precisely,

=i gy A= ] pa (112)

The value B =0 1s obtamed when large positive and negative values of /, occur with equal
frequencies (which 1s the case in particular 1if p(/) is even) It corresponds to an even distribution
L, (Z), which has a simple expression as a Fourier transform,

1 ez il
L,o(2)=5- f dk e*Z " (1.13)

The normal distribution (1.4) 1s recovered for u =2, while u =1 leads to the Cauchy law,

C 1

Ll O(Z) = ; W . (1 14)

At the opposite, when the /, only take positive values, the value g = +1 1s obtamed, and L, | 1s
conveniently expressed as a Laplace transform,

d+1x

L(2)=L,(2)=5 f dse” (115)

(L, vanishes outside [0, +o for 0<pu < 1)

The stable laws L, ;(Z) decrease as Z~ (*#) for large values of Z and their moments of order larger
than or equal to u are thus infinite. Their “basin of attraction” consists of those distributions p(/) that
for large values of / behave in a way similar to L, ;(Z) itself. (Theorem Sa of appendix B characterizes
this basin in a precise way ) This is to be contrasted with the normal law, which attracts all the
distributions p(/) decreasing at least as fast as /. Its attraction basin is thus very much larger; this is of
course the deep reason for its ubiquity 1n nature. Figure 1 1 intends to give a pictorial view of the
structure of these attraction basins.

Several properties of stable laws (moments, asymptotic behaviour, series expansions, etc.) are
summarized 1n the third section of appendix B.

1212 Statistical interpretation The behaviour of the sum X, given above can be quahtatively
understood 1n a very simple way. Let us ask what is the largest value [ (N) encountered among the N
terms of the sum (1.10). / (N) can be estimated by writing

N f p(lydl=1. (1 16)

L(N)
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Fig 11 An arust’s view of the partition of the ‘space of probability distributions™ into basins of attraction of the different Levy laws L, , Note
the predominance of the Gaussian (1 = 2) basin of attraction

*)

This cniterion®’ means that a value larger than / (N) occurred at most once in N trials This leads to

[(N)~N'"", N-o=x (117)

For a large but fimte number N of tnals, the value of X, 1s insensitive to events with / >/ (N); the full
distribution p(/) can thus be cut off at [~/ (N) [since the region /> (N) 1s not sampled] Thus
—-For 0<u =1, the typical value of X, can be estimated by computing the mean value of the sum
(1.10) with this cut off “‘effective” distribution,

l(.
N(N'"™™)!™*=N" (u<1),
XN~Nle(l)dl~{N(lnN) Eﬁzlg (118)

—For 1< u <2, the typical value of the difference X, — X, 1s estimated by

(=X~ [ @ 1)y i~ (NN =N (=), (1 19)

- For u >2, the ntegral in (1 19) converges when I, — =, and one recovers a purely linear dependence
on N

From this simple reasoning, one sees that, when u <2, the typical value of the sum X, 1s dominated
by 1ts largest term / (N). The sum X, thus has a manifest self-simular nature (the whole sum resembles
one single term)

122 “Levy fghts” and physical applications

When the /, denote the lengths of successive jumps performed at time steps ¢ = nr, (1 10) provides a natural generalization of
Browmian motion (see, e g , refs [G9, Blu86, Shi87] and references therein) The typical time dependence of the position of such
“Levy fhights” 1s faster than for normal Brownian motion (and even than for a balhstic motion for u <1) From the above

*) More precisely the probabtlity that the largest number chosen i N trials 15 /, reads Np(/)[fs¢ p(/) dI]* ', which 1s maximal (N — =) tor
I ~N'*
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Fig 12 A typical Levy flight (from [Blu89]) Note that longer and Fig 13 Smars bilhard on a square lattice A classical particle
longer steps are encountered as time goes on, so that the set of visited evolves among perfectly reflecting circles This dynamical system 1s
pomnts 1s a fractal highly chaotic, nevertheless, due to the nearly tangential trajectories

such as the one depicted above, the velocity autocorrelation function
decays algebraically

statistical discussion, one sees that longer and Ionger jumps are encountered as tlme evolves, as depicted m fig 1 2 Since the
volume occupied by the walk 1s related to 1ts “mass” (1 ¢ the number of steps) by R% = N, a Levy flight 1s a fractal of dimension
u (see [Man82]) We now describe some physical applications of Levy flights, i which the broadness of the distribution p(7) 1s
dictated by the physical nature of the problem at hand For a very recent apphcation of Levy flights to diffusion 1n elongated
mucelles, see [Ott90]

1221 Geometrically induced anomalous diffusion in some Lorentz gases Let us consider a Lorentz gas in which a particle 1s
reflected by spherical obstacles centred at the nodes of a hypercubic lattice (““Sinar’s bilhard” [Sin70]) As depicted n fig 13,
there exist arbitranly long paths along which the particle can move freely, without collisions (the “horizon” 1s infimite) The
distribution of the length of these paths can be estimated on simple geometrical grounds [Bou85, Zac86],

p(N~(1-RP, |-x, (120)

where R 1s the radius of the spheres, the lattice spacing being normahized to 2 (for R = 1 the spheres come nto contact) Diffusion
n this bilhard can thus be modelled* as a Levy flight with the “margmnal” value of u =2, which leads to a typical time
dependence of the squared position X> ~ ¢1n ¢ This behaviour was first suggested by Le Doussal and one of the authors [Bou85)]
and Zacher! et al [Zac86] and appears to be compatible with numerical stmulations This Levy flight analysis also suggests that
the diffusion front should remain Gaussian for this problem

In fact, for very small obstacles (R—0), the distribution (1 20) only applies to very long paths > I* with /* ~R™' For
shorter paths, one gets [Bou85]

p()~17%, IsI (121)
A transtent regime with X; ~ r*'* should thus be observed for ¢ < t, ~ R™*"* before the asymptotic regime X ~ ¢ In ¢ 1s reached

If the lattice structure 1s changed, for example to a triangular one, with sufficiently large radius R, these long collisionless
trajectories no longer exist (the horizon becomes finite), and 1t has been proven in this case that diffusion becomes normal
[Sm80] One should note, however, that there exist bilhards with fimte horizon 1n which diffusion 15 nevertheless anomalous, due
to complex long-range correlations between successive jumps (see, for example, [Dou87] for a discussion and references on the
diffusion properties of billiards)

1222 Polymer adsorption and self-avoiding Levy flights The structure of an adsorbed polymer is shown n fig 14 1t 1s
made of pomts i direct contact with an attractive wall, separated by large loops n the bulk The mamn pomt 1s that the

*) Ths 15 of course only a rough approximation, since comphicated correlations between successive jumps exist 1 this deterministic motion They
are, however, very likely to be short ranged and thus will not change the time dependence of X, (see section 1 3)
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Fig 14 Typical configuration of an adsorbed polymer right at the Fig 15 The “phase diagram” of a self-avoiding Levy flight (SALF)
adsorption transtion long loops dive nto the bulk and mduce a (from [Bou87e] m Flory’s approximation, see section 13 3) m the
broad distribution of distances between (singly) occupted surface sites (d, 1) plane [ 1s the dimension of the wall, p 15 the exponent of the

broad step size distribution (/) =/"""*"] (1) Usual SAW, (2) free
random walk, (3) free Levy flight, (4) SALF, (5) collapsed The fact
that the chamn 1s stll 1sotropic at the transition with N monomers on
the wall, together with the value u = ¢/v, means that one 15 1
domain (3), hence the bound (1 24)

distribution of the size of these loops decays as a power law [dGe82], mducing a broad distribution of distances between two
consecutive adsorbed monomers In other words, as emphasized in [Bou87e, 88b], the projection of the chamn’s conformation on
the wall 15 a self-avoiding Levy flight*’ (two adsorbed monomers cannot occupy the same site) Just at the adsorption threshold
(1, when the attraction due to the wall 1s just sufficient to bind the chamn), the step length distribution reads

p(H~1""" (122)
for IS N* and u = ¢/v v 1s the exponent characterizing the end to end distance of a non-adsorbed chan (R ~ N”, see section
133 and table 12), and ¢ the “crossover” exponent, defined, e g , by the number of adsorbed monomers at threshold, N*

The phase diagram n the plane ( u, d) (where d 15 the dimension of the wall) for a self-avoiding Levy flight (SALF) 1s shown
in fig 15, where the diffusion exponent v, ; 1 calculated within a Flory theory (see section 13 3 and table 1 2) As the chan at
threshold 1s still 1sotropic, one has the self-consistent relation

R”~N”~(N"’)”9ALF’ (123)

leadng to v, = »/é =1/u Checking on figure 15 this leads to an upper bound on ¢, which reads in three dimensions
(3=d+1)

o=v (124)
Numerical determinations [Fis82, Ish82, 83] of ¢ yield
¢=v=059

(For a review on this problem, see, ¢ g , [Bou88c| )

*) More precisely, 1t 1s a “node” avoiding Levy fiight and not a “path” avoiding Levy flight, see [Halg5b, Lee87]
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1.2.3. Anomalous diffusion due to long waiting times

12.3.1. Continuous ime random walks In this section we consider a random walk on a regular
lattice, such that the particle has to wait for a time 7 on each site before performing the next jump. This
waiting time 18 a random variable independently chosen at each new jump according to a distribution
() (for simphcity 71s not correlated to the length of the jump /, which 1s distributed according to p(1);
see appendix A for the general case). One can think of this problem as a diffusion among traps, but
without forgetting that a given trapping time 1s not associated forever with a given site, but changes at
each new visit (fig 1 6); disorder 1s thus introduced n this model in an “annealed” way [through y(7)]
The corresponding *‘quenched” problem, m which to each site 1s associated a given trapping time
(random from site to site), 15 more difficult and will be studied in chapter 2 (section 2 4.1).

The ““annealed” problem dealt with here 1s called “continuous time random walk” (CTRW) 1n the
literature. The theory of CTRWs for arbitrary ¢(7) has been extensively developed i the literature
(see, e.g., [Mon65, G1, G7, G9]) A number of quantuties [including P(X, ¢)] can be calculated exactly
using generating function methods This 1s reviewed, for example, n ref [G13], and also, very briefly,
n appendix A (section A 3) We show here how some of these results can be recovered through simple
statistical reasoning, with emphasis on the anomalous diffusion behaviour arising when (7) 1s “broad”

Diffusion behaviour Let N be the number of steps performed by the walker during the time ¢; the
average of the ath component of 1ts position 1s thus given by

X2=(2)N (N->o), (1.25)

where (/2) 1s the mean squared length of a jump,

(I2) Eflf.p(l) dt (1.26)
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Fig 16 Pictonal representation of a continuous time random walk (annealed disorder on warting times)
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(=a’/d on a hypercubic lattice with nearest-neighbour jumps) The total time ¢ 1s simply the sum of the
N waiting times encountered,

N
1=, 1 (127)
n=1

It 1s thus a sum of independent random varnables to which the results of section 1.2 1 can be applied

One 1s thus led to distinguish two cases
(1) If (r) 1s finte, then ¢ behaves typically as t~ N(t), and diffusion 1s thus normal at large times,

X2 =2D,,t with D, =(I2)/2(r) (128)

Comparing this expression with eq (1 3), one sees that the diffusion constant takes the same value as 1f

the successive jumps occurred at regularly separated times 1 = n(r) Indeed, the renewal theorem [G1]

states that, for this process, successive jumps occur, on average, at a constant rate (7) 7" at large times.
(n) If, on the other hand, ¢(r) is a “broad” distribution,

p(ry=rpr U (r>), (1.29)
with 0< u =<1 then (7) = + and ¢ behaves as
(~ N (130)
Ths leads to subdiffusive behaviour [Mon73],
— [<1§>(t/70)“ (0<u<1),
Y In(tin)] (k=1)

Note that, when ¢ behaves as (1 29) with 1 < u <2, this induces anomalous corrections to the normal
large-time behaviour (1 28), namely,

(131)

(132)

[+2

7~ 2D t+ct't (1<p<2),
2D ttctint (p=2),

while )?i ~{E2Y I {t)t+ et for u>2

Diffusion front An explicit expression for the probability density of the position at time 7, P(X, t) can be obtamned 1n the
large-time hmut [with the mitial condition P(X, ¢ =0) = 8(X)] This can be obtained [Bal87] from the general expression of 1ts
Founer-Laplace transform for general y(r) (see appendix A) We present here an alternative dervation, closer 1n spurit to the
above statistical analysis Indeed, P(X, ) can be expressed as a sum over all possible numbers of jumps,

P(X.1)= 2 P(X, N)P(N, 1) (133)

where P(X, N) stands for the probability that the position of the particle 1s X, N jumps having been performed, and P(N, ¢}
stands for the probability distribution of the number N of jumps at a fixed tme t When N 1s large, P(X, N) takes the Gaussian
form (assuming 1sotropy for simplicity (/%) =1%),

P(X, N) = (2@l’N) %2 e XN (134)
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When {7) 1s fimite, the mting form of the distribution P(N, 1) for large N 1s centred around N = t/(7}, therefore the mam
contribution to the sum (1 33) for X and ¢ simultaneously large comes from the vicimty of N = t/{r) and the asymptotic form of
P(X, t) 1s thus simply obtained by substituting this value nto {1 34) Thus, when () 1s fiite, not only the diffusion behaviour 1s
normal but also the full hmiting form of the diffusion front,

P(X, )= (4wD0) 2 e X" D =172(r) (135)

This no longer apphes when w < 1, where the precise form of P(N, t) has to be used ¢ being a sum of independent positive
random variables, its limit distribution 1s obtamed from section 12 1, as

1
P(t,N)— N L, (t/t,N"), (136)

where L, 15 a stable law of index  with 8 = +1 Changing vartables from Z = ¢t/N " to u= N/t* = Z™*, one obtamns
1 . -
P(N, ) = (r,/t)"f, (N(1,/)*) , f“(u)E; wTTIL (™) (137)

Using the representation (B 22) of appendix B, one thus obtamns the Laplace transform of P(N, t) in the form
P(N,E)=rtE* ! g M0B" (138)

(with a redefimtion of 7, to absorb constant factors) In the long-time limit, the sum (1 33) can be replaced by an integral, using
(1 38), the Laplace transform P(X, E) of P(X, t) thus reads

x

j %,N— exp[—N(r,E)* = X*I2I’N] (139)

0

rEErT!
P(X, E)ZW

This integral can be expressed n terms of the modified Bessel function K, _, ., leading to the final expression*’ [Bal87]
P(X. E)=n(al’) " *[(V2IDIXI(r,EY* ) (EY" 7K, o [(VIXID(REY 1] . <1 (140)

The diffusion front 1s thus no longer a Gaussian for ths problem when diffusion 1s anomalous Nevertheless, a generalized
central limt theorem still applies m the asymptotic it Indeed, (1 40) means that P(X, ¢) takes the scaling form.,

P(X, )= 1 () *f(=3/ DX 12"] . (141)

where v = /2 1s the diffusion exponent [the precise meaning being similar to eq (14) or (1 11)] The scahng function f(u)
decays for large u (|X|> ) as

fa) ~e™, 5=1/(1-») (142)

(Power law prefactors have been omutted, this behaviour can be derived either from the explicit expression (1 40) or directly by
the steepest descent method on the integral representation (1 33), using the behaviour of L, (Z) near Z=0) This stretched
exponential decay of P(X, ¢) for |X|>¢" with § =1/(1 - ») will turn out to arise m a number of situations considered in the
following (see chapter 5 for a general discussion of diffusion fronts) In fact, 1t stems from the fact that, within the analogy with
critical phenomena discussed above, P(X, E) should be thought of as a correlation function, (1 42) then corresponds to a simple
exponential decay of P(X, E) for |X|E" > 1

An explcit expression can be given for the scaling function f in one dimension, where K, _,,, = K|, has a simple form Then f
1s easily found to be

A= lul O IL () =) d=1, (143)

where L, 1s a stable law of index v = /2, B=+1 (One checks, using eq (B 24). that a Gaussian 1s recovered for »=1/2)

*) This has recently been derived 1n [Bal§7]. following a different method Note, however, some misprimts in the final result of {Bal87], which
does not have the correct scaling form (1 41)
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. >
X
Fig 17 “Comb-like" structure the spikes behave as traps with a broad distribution of release time, proportional to the probability of first return of
a one-dimensional random walk, indeed, the walker must return to the entry point, and then has a finite probability to leave the spike

We now turn to three examples which can be analyzed as CTRWs with a broad distribution of
waiting times induced by the motion itself Several other physical applications will be described n the
course of this article; mn particular 1t will appear that random walks i a quenched random medium
(which are a priort much more complex problems) can m some cases be “‘renormalized” at large scales
onto a much simpler CTRW model [Mac85, Bro89a,b]

1.2 32 Diffusion on comb-like structures Let us consider the diffusion on the comb-hke structure
depicted 1n fig 1 7 The teeth of this comb behave as traps in which the particle stays for some time
before continuing its random motion along the X-axis. Thus, for infimtely deep teeth (L = +) the
warting time distribution (7) 1s simply the distribution of the first return time at the ongin (the
entrance of a tooth) of a one-dimensional Brownian motion As already mentioned (cf also appendix
A), 1t decays for large 7 as

Y(r)=P()~7 " (1 44)

. The comb-like geometry thus

(S

Thus, the motion along X can be described as a CTRW with u =
induces anomalous diffusion along X,

}?Ntl/Z (145)

This result, obtained here 1n a very simple way, has been recently derived by Weiss and Havlin {Wei86]
using somewhat more sophisticated methods (see also ref [G12] for detailed studies of diffusion on
combs, and ref [Bal87] for a numerical confirmation of the shape (1 43) of the diffusion front).

Consider now the case of teeth with a finite depth L. The time required to explore a given tooth 1s of
order 7.~ L%/D, (D, 1s the “bare” diffusion coefficient along each tooth). For 7> ., an exponential
decay of P,(7) 1s recovered, and the average time spent 1n a tooth s thus

(1) ~f rdrr 3 ~L

Hence, for ¢> 7. normal diffusion 1s recovered, with a modified diffusion constant depending on L as
D~1/L

1233 Anomalous diffusion in an internuttent dynamical system [Man80, Ge184] It 1s well known that purely deterministic
dynamurcal systems can give rise to diffusive motion, as a result of the chaotic nature of their dynamics A very simple example
with a single degree of freedom X, 1s provided by a mapping of the form

X =flX), (1 46)
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Xt+1

Fig 18 Intermuttent penodic mapping X,,, = f(X,) The representative point remams trapped in the “laminar” regions (channels) during a long
period, which can be taken as random and distributed according to (1 52) if the remnjecting regions are sufficiently chaotic

where f has a discrete translation invanance (fig 1 8),

fin+x)=n+flx), formtegern,  f(—x)=—f(x) (147)

X, then follows a diffusion process between elementary celfs of umt length centred on each integer n A Josephson junction
subjected to a pertodic potential V() 1s an example of a physical system following (1 47), there X, stands for the phase ¢ evolving
according to

de/dt=T'V(p) (1 48)

mn the mit of large fnction The function f(¢) = ¢ + T At V() thus satisfies (1 47) (chaos in Josephson junctions has been
observed, e g, in [Hub80]) Geisel and Thomae observed 1n [Gei84] that anomalous diffusion can anse as a result of the
wntermittent nature {Pom80] of the mapping f in the vicimty of the fixed pomts x = +n Indeed, the dynamics of X, then consists of
long lammar sequences m a given cell, mterrupted by chaotic bursts associated with transfer from one cell to another These
lammar sequences can induce a broad distnibution of waiting tumes 1n each cell The mapping considered 1n [Ge184] 1s sketched n
fig 18 In the neighbourhood of each integer, f 15 characterized by an exponent a,

X, =X +aX + (149)
(here, for X,—>0") Each nteger 1s thus a marginally stable fixed point, and the larger the exponent a 1s the larger 1s the time
spent by a trajectory n the narrow “vertex” close to the centre of each cell The detailed shape of f far from these regions 1s of no
importance for the following, and must only insure ergodic reimjection in the vertex *) Following [Ge184] the motion close to each
fixed point can be approximated by the continuous time solution of (1 49),

X=[X " —ala— 1) Y, (1 50)
from which one deduces the warting time r as a function of the positton where reinjection takes place,

(X)) = (X, * =2 ") /[a(a - 1)] (151)
This allows one to deduce the waiting time distribution (7) from the (unknown) distribution p(X,) of reinjection pomnts, the

*) Note that the particle can be remnjected on both sides of the vertex, one deals here with “type III” mtermittency
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behaviour of ¢(7) for large 7 only depends on the one of p close to X, =0, assuming p(X, =0)#0, =, (1 51) leads to
pr)~r T p=1la 1) (152)

Intermuttency has thus induced a broad distribution of waiting times, and the resulting diffusion behaviour reads

I l<a<?2,
X;~{tlnt, a=2, (153)
r, 2v=1/(a-1).a>2

1234 Experimenis anomalous diffusion in a linear array of convection rolls [Pom89, Car88] Another physical example of
anomalous diffusion due to trapping has been proposed recently by Pomeau, Pumir and Young [Pom89] (see also [Shr87,
Guy89]), i connection with an experiment of Cardoso and Tabeling [Car88]

The problem of interest 1s the motion of a tracer particle in a one-dimenstonal array of convection rolls (see fig 19) The
particle 15 both convected along the flow lines and experiences molecular diffusion (D), which allows *jumps” between flow
lines The basic observation, which will be discussed below, 1s that each roll acts as a trap with a release time distribution decaying
as y(r)~7"""* for 7< LD, (L 1s the diameter of the roll) Since different visits to a given roll lead to different diffusion
histories, the total time ¢ will again be the sum of independent, broadly distributed varniables The number of visited rolls after a
time ¢ thus reads (from section 12 3 1)

N~ forp<l1 (1 54)

In order to understand the origin of the broad distribution and the value of w, 1t 1s convenient to view the flow lines as a
discrete set, numbered from : =1 (corresponding to the “edge” of the roll) to 1= S (see fig 110) The particle thus makes a
one-dimensional random walk “in  space”, onto which the circular convective motion is superimposed The probability of leaving
the roll 1s proportional to the probablity of first return to the site 1 = 1, which, after m steps and for m* < § reads P,(m)~m >
(see above, section 1 2 3 2) Now, if 6 represents the time needed to make a closed loop on the rth Iine, the total time spent by
the particle in the cell will be

=20, (155)
=1
Here, the boundary conditions imposed by the horizontal plates must be specified We shall assume that the velocity behaves,

for small distances from the wall, as V(z) ~ V,(z/L)? B8 =0 corresponds to “free” boundaries while 8 = 1 describes a solid, “no
shp™ boundary*’ Flux conservation then imposes that the :th flow line 1s at a distance (1/8)""* "L from the horizontal piate, and

n-1 n n+ 1
/ "
, L . V(z)~ 2P
6)

Y 1=2

)(= / 77 ~ 1= 1
Fig 19 One-dimensional array of convection rolls, defining a one- Fig 110 Blow up of a part of a convection roll, showmng the
dimensional discrete lattice on which the tracer evolves deformation of the flow lines (which are taken as discrete here) near

the solid boundary Note that due to flux conservation the flow lines
expand when the velocity 1s lower

*) Other values of 8 might be considered, for example. if the plate 1s covered by a self-similar profile of adsorbed polymers [dGe85)
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1s thus characterized by a transit time 6, ~ (L/V,)(S/1)?**' Now, the probability to be on the :th line after j steps 1s simply

5
2y

PG )~ e (1 56)
The average transit time 5] hence depends on J,

§=2 6P, 1)~ "0, (157)
and thus*’

,r:i ‘]~m(B+2)/2(B+1) (158)

1

I

Thas 15 the basic physical result time and number of steps are not proportional to one another, except when 8 = 0, indeed, the
first “loops™ take a very long time since the particle gets close to the wall where the velocity 1s vamshing To complete the
argument and obtain u, one only needs to write

Y(r)dr =P (m)dm
which yields u = (1+ 8)/(2+ 8)

From this picture, not only the ime dependence of the number of “invaded” rolls follows, but also the full diffusion front 1n
terms of Levy laws The calculation was performed 1n section 12 3 1, where we have shown that (eq 1 43)

1 ;
PX, )= = £(1 X167 (159)

In particular, for 8 =1, u/2=1/3, m this case (see appendix B), the Levy law can be expressed in terms of a Bessel function and
one finally obtains

P(X, )=V|X[/t K, [| X}, (1 60)

which 1s the result of {Pom89] (see also [Shr87, Guy89] [Note that (1 60) 1s an Airy function | This expression reproduces quite
well the experimental data of Cardoso and Tabeling (see fig 1 11)

Note that 1t would be interesting to bias the tracer’s motion by an external field, in order to probe the non-linear response
properties that should occur in this case (see chapter 5, in particular section 5 4)

C/Cphax

SZ'E—II3

Fig 111 Rescaled experimental results [Car88] for the diffusion front compared with the theoretical prediction (1 59) C/C,_ =f,,,(Xt™""*) Note
that there 1s no adjustable parameter to obtamn the above fit

*' Note that there 1s a physical upper bound on = 7, ~ (L/V,)[V,L/D,]****
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13 Long-range correlations

131 Generalization of the CLT to sums of correlated random variables

When the second condition needed to establish the usual CLT 1s not fulfilled, that 1s, when the
summed random variables are not independent, the analysis cannot be developed as generally and
precisely as 1n the previous section (for recent results, see, e g , [Ebe86, Dav8g9]).

It 1s a prior1 quite obvious that long-range correlations can modify the ‘‘normal” behaviour (think of
the extreme case in which the N variables are 1dentical'), but that very short-range correlations should
safely be 1gnored What we do need 1s thus a criterion of the relevance of the correlations

13.1.1 Relevance of the correlations Let us consider the sum of a set of random variables (/, ), the
correlation function of which, defined as

Cln)=(Lli,,) — L) s

only depends upon the difference n (stationary process) *’ Assumung for simplicity (1,) =0, the
variance of X, =X}_, [, reads

X3 = NC(0)+2 i (N — k)C(k) (161)

Two cases must thus be considered.
(1) LY., C(n) converges when N— o, that 1s, C(n) decays more rapidly than n™" for large n In this
case

_ﬁ,~N<2 Z Cn) + C(O)) (N—>w), (1.62)

and thus X, still behaves typically as V'N; only the prefactor (the **diffusion constant”) 1s modified by
the correlations In this sense ‘“‘short-range” correlations are irrelevant This 1s of course the case when
the correlations have a finite range [for example when C(n) decays exponentially] but the criterion 1s
much less restrictive Introduction of finite-range correlations in the Browman motion has been
considered, for example, as an improved model of 1deal polymer chains (Orr’s model, see ref [G16],
pp 31, 32). The range of those correlations 1s called the persistence length of the chan

(u) If on the contrary correlations are “long ranged”, 1.e , when C(n) decays as 1/n or more slowly
[for example, if C(n)~n ', y <1], then the typical behaviour of X, 1s modified by those correlations
From eq (1.6) one obtains (replacing, for large N, the sum by an integral)

N7 (<),

NInN (v=1) (163)

X_2N~NfC(n)dn~{

“Diffusion” 1s thus enhanced by correlations. the typical value of X, 1s much larger than VN The
extreme case of perfect correlations (when all variables are equal) 1s described by y =0, which gives
back the expected “ballistic” result X, ~ N.

*' We assume that C(n) does not display asymptotic oscillations which could nvalidate the following discussion
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1.3.1.2. Stanistical interpretation: effective number of independent variables The previous criterion
can be understood 1n simple statistical terms, thereby providing us with a heuristic tool which turns out
to be quite useful to understand qualitatively many physical situations, as will be illustrated below
The 1ntegral of the correlation function

Na(N)= 2 Cm)/((F) = (D)) (1.64)

is an estimate of the number of variables which, among the set of N chosen vanables, statistically
“resemble” a given one [, This 1s because ((I,/,) — (I,) (L, ))/({I*) = {I)?) measures the probablity
for /, to be “close” to [, One can thus rearrange the set {/,,0=<k =N} mto “famhes” of N, (N)
similar vanables. There are obviously

Neff(N) ~ N/Nld(N)

such families, which can be considered as effectively statistically independent This amounts to
decomposing X, as

Neff

Xy~Ny WN) 2 I, . (1.65)
k=1

where the new sum now has “normal” fluctuations. In other words, one “integrates out” the
correlations by redefimng new random vanables as “blocks” of old ones. From (1.64), one obtains the
typical behaviour

XN~N1dVNeff~ VNNld’ (166)
which gives back (1 62) and (1.63) since

~const if y>1,

N (N){~In(N) if y=1, (167)
~N'7 if y<1

13.1.3. Shape of the hmut distribution. When correlations are “short range” [with meaning (1)
above], 1t 1s possible to prove that the limit distribution of the sum remains Gaussian, see, e g , [Ma85]
This follows from the existence of a k° term when expanding the characteristic function in the proof of
the CLT given above In the case of Markov processes, or more generally of processes with a
finite-range memory, transfer matnx techmques can be used to establish this result and study related
questions (see, e g , refs [G1, G17]).

However, long-range correlations do lead 1n general to hmit distributions deviating from the usual
Gaussian shape Examples are provided by the polymer problem (section 1 3 3), or the distribution of
the magnetisation of a spin model at the critical point (section 1 3 4); see also the examples given n
[Dav89]. In such cases, the lmit distribution is expected to depend on the detailed structure of the
correlations An elementary remark in this respect 1s that the limit distnbution indeed remains Gaussian
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if the correlations have a Gaussian structure, 1.e . when the distribution of X, , X, reads
P(X,. .X,)=(detC)" exp(-E X,C,;IXJ) (1.68)
Yy

This immediately follows from the properties of Gaussian integrals In the general case, we are not
aware of any mathematical work providing a classification of the possible limit distributions

Some umiversal features of the tails of the limit distributions of the position 1n a number of diffusion
problems considered in the following, will be pointed out 1n section 532 They are closely related to
the response of the walk to a small bias

13 2. Geometrical correlations and anomalous diffusion: the example of a layered medium

In this and the following two subsections. we shall present physical illustrations of the above
statistical mechanism In the situations we consider, correlations are not introduced by hand into the
model, but rather are dynamically generated by the process itself

A simple example in which long-range temporal correlations induced by the dynamics lead to
anomalous diffusion 1s that of a bidimensional layered medium represented in figure 1.12a Within each
layer the velocity V(Z) 1s constant and directed along the layer In the following, V(Z) will be a
random vanable, only depending on the layer Z and without any wnterlayer correlations This model was
first considered by Matheron and de Marsily [Mat80], to study diffusion m porous rocks exhibiting
large-scale permeability — and thus velocity - fluctuations

This 1s the first example of a disordered system encountered in this article: two statistical ensembles
are nvolved, namely the distribution of {V(Z)} and the different walks (or thermal histones) for a
given {V(Z)} The position of a walker at time ¢ depends on both, and one should pay attention to this
fact when discussing 1ts statistical properties In a real experiment, one is in general interested 1n the
properties of walks for a given (“*quenched”) {V(Z)} In this section, we shall not discuss 1n detail the
question of ensemble averaging, we only want to point out the statistical mechanism leading to an
anomalous diffusion law, and to predict this law by a simple argument [Bou87c] Appendix C is devoted
to a more detailed study of the diffusion behaviour and diffusion front of this model, for which several
analytical results can be obtained

1321 The diffusion behaviour The tranverse motion (with respect to the flow) 1s a usual Brownian
walk, characterized by Z° =2D t Each layer 1s thus visited a large number of times, the probability for

VA
—>Vi,2 /
-
-~V =~ "‘// )
—V, T /
=V, _ A'/
(a) > X (b} (c)

Fig 112 (a) Model of a two-dimensional stratified porous medium, permeability fluctuations induce a random distribution of local flow velocity
(b) Three-dimensional analogue with channels of constant velocity (c) “*‘Random Manhattan™ lattice n two dimensions



J -P Bouchaud and A Georges, Anomalous diffusion m disordered media 151

the particle to be in the imtial layer after time ¢ 1s simply
Py~ (D, 07"

This means that of the order of \/D ¢ different layers have been probed, each of them N, ,(¢) ~t/V/ D ¢t
times Said differently, the one-dimensional motion along Z induces a temporal correlation of the
particle velocity decaying as

+x

(X} =BT, y= | YY) OV (169)

(we consider the problem in the reference frame in which (V) =0).
The total displacement along X 1s simply the sum of the velocities seen by the walker According to
the previous section, one thus has

VX:~Ve,/D'? ¢, (1.70)

which 1s (up to a numerical factor, see appendix C) the result obtaned in [Mat80] for Y (j(?) this
model exhibits correlation-induced hyperdiffusion.

1322 Fwe remarks

(1) In the laboratory frame, we must obviously superimpose the convective motion X, = (V)¢ on the previous hyperdiffusion
If, however, the average velocity (V') 1s not strictly parallel to the layers, diffusion 15 asymptotically normal, since the number of
visited layers becomes of order + Diffusion 1s also normal if the sample 1s fimite m the z direction In both cases, however, the
above behaviour holds for intermediate times

(n) If the velocity field 1s so strongly disordered that (V) = (V')* = (if, for example, p(V)~V ~'"*), V— o), then diffusion
1s even more rapid,

\Dit
X l E V D(l/u 1)/2 (1/u+1)/2 (l<,u.<2)

L =1
(m) If the flow profile 1s not random, but a Poisewlle flow, V(Z) ~ Z° or a shear flow, V(Z)~ Z, then one obtams

VBT
X,~\/DL f dZWV(Z)~D**'+P? (171)
L

with 8 =1 (shear flow) or B =2 (Poiseuille flow)
(1v) One can generalize the problem to higher dimensionalities and consider the geometry of figure 1 12b In this case the
number of different “‘cells” probed by the particle 1s ¢/In ¢ (see appendix A) and the resulting diffusion behaviour 1s thus

X ~tlnt (172)

(v) One may also consider, following Redner [Red89, Bou89f], an isotropic version of the above model which, in two
dimensions, 1s defined through

V(x.z)=V(2) random, V,(x,z)=V,(x) random (173a)
(“random Manhattan” velocity field, see fig 1 12c) Assuming R~ ", one has

(V(OV.(0)) = (V(OV.()) ~ 1™,
and hence, using (1 63),

112

R~t'~t""* or v=1% (173b)
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1.33 Memory effecis and long-range correlations. new nsights into the Flory approach to polymers

Self-avoiding walks (SAWs) faithfully model linear polymers in a good solvent [G16-G18], that 1s
when the attractive part of the interaction 1s screened out and only the strongly repulsive hard core
must be taken into account In three dimensions, for example, the self-avoiding constraint makes the
chan “swell” the end to end distance (or the gyration radus) follows, as a function of the number of
monomers N, a “hyperdiffusive” law,

R~N'. p= (174)

(SIS

Long before the 1dentification of this problem with the cnitical behaviour of a n-component spin model
n the mit n— 0 [dGe72], Flory did propose [G15, F1s69] an approximate formula for », which turns
out to be remarkably accurate Flory’s approach has been extended to a host of other problems, and 1s
very often successful Nevertheless, the very method of Flory has often been described as 1ll founded,
and 1ts success fortuitous The aim of this subsection 1s to show how Flory’s method can n fact be
understood 1 statistical terms, as a self-consistent approach to a problem m which long-range
correlations play a dominant role

13.31 Flory’s approximation: the conventional picture The usual way to establish Flory’s formula
1s to estimate the different contributions to the “free energy” of a chain of N monomers and size R, and
then to find the optimal size mmimzing this free energy
— One thus considers the repulsive energy coming from the hard core repulsion, and thus proportional
to the number of contacts within the chain A mean field estimate of the latter 1s simply the product of
the number of monomers times the average density,

F,,~kTa"N’R™* (175)

(a is a typical monomer size) This term obviously favours large values of R and thus swelling of the
chain

- This swelling 1s limited by an entropic factor which expresses the fact that there are much fewer
stretched configurations than typical ones This entropy reads

S=kln ¥(R.N), (1 76)

where N(R, N) 1s taken to be the total number of conformations of the free chan N(R,N)=
z"P (R, N), z being the lattice coordination number, and Py(R, N) the Gaussian distribution associated
with the free walk

The total free energy F = F,  — TS thus reads

F N R
- 177
xT = ¢ d+a2N Nlnz, (177)

which, upon minimization, yields
R=aN", v=3/(d+2) (178)

This value of v 1s the Flory approximant. It 1s exact m d =1 (R = N trnivially), and n d =2 (v = 3/4
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Table 11
Exponent » for linear polymers

ﬂkd=1+£”

[Sta82] d=2 d=3 d=4-¢
“exact” 1-¢/2 3/4 0588 1/2+€/16
Flory (8 =1, upper bound?) 1-¢/3 3/4 3/5 1/2+ /12
lower bound? (8 =1/2) 4/5-4¢/25 213 417 1/12+¢/16
B=v 1-¢€/2 0707 0571 1/2+€/16

from conformal invanance [N1e82]); it predicts d, = 4 as the upper critical dimension above which the
self-avoiding constraint 1s urelevant (v =1/2) It 1s remarkably precise in d =3y, =0.6, which is
2% off the theoretical [LeG85] and experimental [Cot80] values » =0 588 .. Its € = 4 — d expansion
does, however, not reproduce the correct result [dGe72] (table 1.1)

Numerous authors have nevertheless underlined some weak points in the above argument.

(a) Both terms (N”/R? and R N) are grossly overestmated compared to their actual value for the
self-avording walk (for example, the estimate N/R? assumes no correlations between monomers—but
obviously the interactions correlate them in such a way as to reduce the number of intersections). De
Gennes [G16] argues that the two errors fortuitously cancel to yield a reasonable value for » (see fig.
113), making improvement very delicate since the balance between the two terms should not be
ruined.

(b) Flory’s equilibrium free energy 1s found to behave as —NIn z + N>* ™', whereas the true free
energy can be written as —N1n z + (y — 1) In N. (See below for the interpretation of the exponent vy.)
Hence, the minimization procedure concerns subdominant terms (which are not predicted correctly at

FM

N4 N))F

Dy

\ 'R2
_ /&
-Nln z \’-/

/
-1

- ~

-Nln zf===C T

Fig 113 The success of Flory’s approximation 1s usually understood as illustrated both parts of the free energy (1 77) are overestimated, but ther
mtersection happens to be close to the exact value
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the end), although Flory’s approach 1s not able to account for the dominant term [dCI70]. Furthermore,
the subdominant term N~ has not the correct sign [dCI70]

Many other works (which we shall not discuss here though some are of great interest) try to explain
the reasons for this apparently undue success [G17, Edw65, Dek87] The interpretation we propose
below 1s satisfying because 1t nowhere nvolves a “free energy”” concept, but 1s entirely based on a
statistical reasoning

1332 Flory approximation: a stanstical picture [Bou89c] The physical image that we promote 1s to
consider a polymer as a random walk with elementary steps exhibiting long-range correlations, induced
by the self-avoiding constramt and thus by the past “track™ of the chain itself. This suggests a natural
way to construct those correlations- first, one should notice that the self-avoiding constramnt changes the
large-scale structure of the walk, but that at small length scales the walk locally behaves as a random
walk- local constraints are “irrelevant” (This 1s well illustrated by the fact that K-tolerant walks — walks
such that Kth order contacts are allowed — have the same large-scale structure as truly self-avoiding
walks; see also [Dek87] ) We shall thus define two types of self-intersections: local self-intersections and
long-range self-intersections. only the latter are responsible for the long-range “‘transmussion” of the
correlations and thus of the large-scale non-Brownian character of the walk.

We thus view the nth displacement as completely random except when this #th monomer makes a
“long-range self-intersection” The ntegral of the correlation function between displacements,

N —_
N
N, = f C(n)dn =D, Ax, Ax, (179)
(the bar stands for an average over starting pomts, or configurations) can be wntten as

> Ax,Ax, + > Ax,Ax, (1 80)

long-range free

contacts
The “free” part averages to zero since the displacements 1n this sum are supposed to be uncorrelated
(A weaker statement might be more correct: mn this picture, the “free” part contributes m a
subdomimant way to N,;) If the number of long-range contacts 1s N_, the first part in the sum contains
N_ terms and is thus expected to scale as

Ny~ 2 Ax,Ax,~N*?, (1.81)
long-range

contacts
where the exponent 8 measures **how correlated” these displacements are* 8 = 1 corresponds to perfect
transmussion of the correlations at the contact point More generally, one expects (1 81) to be bounded
from below by Browman behaviour and from above by the ballistic one,
1=B=1. (182)

Now, the end to end radius of the polymer 1s a sum of correlated vanables, which thus scales as

R~ N /NIN, (183)
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Hence R=N"=1\NPN It 1s reasonable to estimate the number of long-range contacts 1n the mean
field way, as

N.~ NN, (184)

This 1s much smaller than N if v>1/d, 1e., if the chain 1s not collapsed; the real total number of
contacts is, however, known to be N, but most of them are local contacts. Therefore, one obtains

N = N2rdB/2e12

)

or
v=(1+28)/(2+dB) (1.85)

Without specifying the choice for 8, one observes that the correlation function C(n) decays as n~> with
y =1+ B(vd —2). Correlations are relevant only if y<1 or » <2/d, and 1n any case v =1/2. We thus
find that the critical dimension above which correlations do not change the Browman character of the
walk 1s d, = 4 independently of B. Right at d = 4, correlations decay as n~" and m this case N, ~In N;
logarithmic corrections appear naturally within this approach at the critical dimension while this is out
of reach in the usual Flory argument

Now, what 1s the value to be given to B8? A “strong” correlation hypothesis corresponds to g =1
Equation (1.85) then gives » =3/(d + 2), which 1s precisely Flory’s formula (1.78). This suggests that
Vriory Might in fact be an upper bound to v. This indeed seems to be the case (see table 1.1). B =1/2, on
the other hand, would yield a lower bound (which s also obeyed by known results),

v=4/(4+d). (186)

A “self-consistent” choice 1s 8 = v, since it states that the sum in eq. (1.81) statistically behaves as the
full sum of individual displacements. For 8 = v, eq (1.85) reads

y=1N4d. (1.87)

Note that, quite amazingly, this formula 1s exact for d =4—¢and d=1+ ¢!

Now, the points we want to make appear clearly:

(a) The Flory formula combines an exact result on sums of correlated random variables (eq. 1.63)
with an approximate way of estimating the correlations, namely a “mean field” approximation of the
number of long-range contacts (and not of the total number of them), and “strong” transmussion of the
correlations hypothesis. The Flory formula more naturally appears as one member of a whole family
parametrized by the exponent B, which in fact suggest bounds on »

(b) The generalization to a large number of other problems is straightforward, without any need of
constructing an elastic “free energy”. The “recipe” 1s the following: One has to know the behaviour of
(i) the sum of perfectly correlated vanables of the type considered (for example, on a tortuous fractal, a
minimal path along the structure of length s leads to a displacement R ~ s* with a <1, see section 6.1)
and (n) the sum of independent random varables of the type considered, that 1s the value of the
exponent » above the critical dimension, which we shall denote below by »,.
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Equation (1 85) will then be replaced by
R=N(N/N,)" (1.88)

Application of this method yields “Flory formulae” (with the same way of estimating N, and with 8 = 1)
to, e.g., self-avoiding Levy flights, self-avoiding surfaces, polymers on fractals, etc. Table 1 2 summar-
1zes the quantities of interest for these various problems

One problem deserves special consideration: that of branched polymers for which « =1 and
v,=1/4 We obtain for the exponent governing the size of a branched polymer

v=7/(4+3d), (189)

nstead of the value proposed long ago by Isaacson and Lubensky [Isa80] (based on an uncontrolled
“elastic” free energy),

v ="5/(4+2d)

Our formula 1s also expected to be an upper bound (which 1s satisfied by all known results) Obviously 1t
reproduces v =1/4 for d_= 8 but contrarily to the previous one yields the exact result in d =1 The
corresponding conjectured lower bound (8 = %) reads

»=8/(8+3d), (1 90)

which again 1s satisfied by all known results (see table 1 2)

Table 12
Some Flory-type approximations and lower bounds

Self-avoiding Levy flights [dGe86)
Distribution of elementary step length ¢(/) ~
Value of v, »,=1/p

Valueof a a=1ifu>1and a=1/ufor a<1

Generalized Flory approximation (B=1) v =y, for p <1, v=2u - 1)/(du —d + p) for p>1

I*(l*#l

Self-avoiding walks on fractals

(d, fractal dimension, d, spectral dimension, d spreading dimension, see section 6 1)

Value of v, »,=d /2d,

Value of a a = d/d,

Generalized Flory approximation (8 =1) vd,=(4d — d,)/(2+2d - d_) [G12, Bous9c, Aha89]

Self-avording manifolds [Kan86],

(internal dimension of the mamfold D)

Value of », »,=1- D/2 (loganthm for D =2)

Value of @ a =1

Generalized Flory approximation » =[2+ D(28 - 1)]/(2+ dB)

Branched polymers

d=1 d=2 d=3 d=8—¢
“exact” 1 0 6408 [Der82a) 1/2[Par81]  1/4+3¢/118 [Lub79]
Flory (8 =1) 1 070 7/13 1/4+36/112
lower bound” (8 = 1/2) 8/11 477 8/17 1/4+3/132

Lubensky-Isaacson [Isa80] 5/6 5/8 1/2 1/4+¢/80
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We feel that more work should be done to establish nigorously the bounds suggested here, which
naturally emerge from the physical picture and methods that we propose This would at last settle the
precise status of the “Flory approximation”

1333 Linuning distnbution for the end to end distance Once the “diffusion law” relating the average radius of gyration to
the number of monomers 1s established, one would like to go further and obtan the full probability distribution P(R, N) For
large R and N, one expects that in the scaling region R~ N”, P(R, N) takes a scaled, universal shape, of the form

P(R, N)= N""f(RIN"), (191)

independently of the microscopic details of the model (generalized CLT) Using the equivalence with the =0 ¢* field theory,
the asymptotic behaviour of f(u) (both for u—0 and for u>1) can be found One has [Fis66, dCI180, G16]

fwy=u"""" for u—0, (1 92a)
fw=uw e, §=1/(1-v), o=81-y+vd-d/2) (1 92b)

The shape of f 1s sketched 1n fig 1 14 Equation {1 92a) shows that the probability for the last point of the polymer to lie very
close to the mmtial pomnt 15 reduced by a factor N'™” as compared to the nave “mean field” prediction P,(R=a, N)=(a/

R)'~ N7 In other words, there are N'~” fewer self-avoiding polygons than self-avoiding walks with free ends (see the detailed
discussion 1n ref [G16]) Note that 1t has been suggested m ref [G17] that i the spinit of a Flory approach, one should take
v =2v Equation (1 92b) has already been encountered mn section 123 1 (eq 142) and 1s closely related to the response of a
SAW to an external bias, as will be extensively discussed in chapter 5

1.34 Spin models at their critical pont

As a last illustration of the physics of long-range correlations, we wish to present some features of
spin models at criticality using the statistical language and tools introduced above (for early related
ideas, see [Cas78]).

As 1s well known, the magnetization

of a spin model on a d-dimensional lattice of size L is the result of a competition between entropy
(inducing disorder) and energy (acting to correlate the spins on large distances). At high temperature,
the former dominates and correlations between spins are short ranged. One thus has (say for Ising spins

Af )

¥1
g

U

Fig 114 Scahng function charactenizing the hmut distribution of the position P(R, N) for a polymer
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S, ==1) in the whole high-temperature region

Ld
M=2,8~VL* (193)
1=1
More precisely, the CLT applies in the usual Gaussian form,

P(M, LYY~ exp(—M*2xL?),

|
\/277'de

with a variance equal to the magnetic susceptibility On the contrary, in the low-temperature (pure)
phase, perfect correlations are favoured and lead to a non-zero value of the correlation function at large
separations, equal to the square of the remnant magnetization m,

Ld
M= 8 =Lm+VL* (194)
=1

In this phase, the ratio M/L“ has a non-vamishing limut for large L The distribution P(M, L) for large
L 1s essentially a Gausstan distribution centered at +mL? (or —mL?)
Precisely at the critical temperature 7T, the spin correlations decay algebraically,

(S0)S(r)) ~r™“7"™,

and, according to section 1 3 1, the system can be pictured as N,;, “‘effectively independent” families of
N, perfectly correlated spins, with

1

The fluctuations of the total magnetization are thus of order

M=V\LN,~(L"", (195)
v=(d+2-n)2d#} (1 96)

Thus, at the critical pont, the total magnetization follows an anomalous power law as a function of the
number of sites L with an “anomalous diffusion exponent” v More precisely, 1t 1s the varable
M/(L*)” which has a hmut distribution for L — % at the critical temperature:

P(M, LYY= L "f(M/L") (197)

The following information 1s available about the scaling function f for the Ising model (sometimes called
the “block-spin” distribution 1n the framework of real-space renormalization group studies or of
rigorous approaches)

- In one dimension, an analytical expression due to Bruce [Bru81] can be found from the solution of the
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model 1n a field, yielding
fry=318(x—-1)+ 18(x +1).

— Numerical simulations by Binder [Bin81] show that f depends on the boundary conditions For free
boundary conditions, its shape evolves from a double-peaked to a single-peaked structure when the
dimension is increased from d=2 to d=3. Some approximate analytical treatments have been
performed in [Bru79, Bru81] using Wilson’s approximate recursion relations. Finally, some moments of
f are known m two dimensions, using conformal invariance [Bur85] (n particular (M Y
(M*)*=1.33 mnstead of 3 for a Gaussian).

— As we shall argue m section 5.3.3, the shape of the tauls of f(u) only depends on the dimensionality
and on the cntical exponent at criticality. This follows from the analysis of the response to a weak
magnetic field, which can be shown on a general basis (section 5 3.3) to follow a non-hnear law,

M~ L‘HC™) (198)
from which 1t follows that (u>1)
fy=e™, §=1/(1-) (1.99)

(re., d=4ford=4, =6 for d=3 and §=16ford = 2), and that one has the well-known relation
between the critical exponents § and 7 (M~ H'"®),

d=vi(l-v)=(d+2-7)/(d—2+n) (1.100)

These probabilistic remarks concermng the critical state provide some insights on the neighbourhood
of T, and in particular allow one to emphasize the statistical content of the scaling relations between
critical exponents, defined conventionally by

F=LYT-T) ™, x=|T-TJ]".
(1 101)
E=|T-T|™, m=|T-T]|°.

For T close to T, one can picture the system as made up of regions of size ¢ 1n the critical state There
are (L/¢)* such regions, which each contribute to the total free energy by an amount of order kT,

FIkT=L%¢ (1 102a)
Hence the Josephson relation

2-a=y,d. (1 102b)
The typical size of the fluctuations of the total magnetization can be estimated as (T < T,)

M=(¢YLE ™ > m~gth; (1 103a)
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this leads to the relation
B=dy,(1— ) (1.103b)

Accordingly, the susceptibility to an external magnetic field is enhanced by correlations In the
high-temperature phase. for example, the fluctuations of the total magnetization read

dSM ~\/(L/¢)" ¢ (1 104a)

Hence, from yT_=3M%L" one obtams y = »,d(2v — 1), leading to

Y=v(2-m) (1 104b)
Using (1 104) and (1 100), eq (1 103a) can be written as

B6-1)=v
Making use of (1 102), this also reads

a+28+y=2

Equations (1.102)-(1 104) form the well-known set of relations between critical exponents, which have
been recovered here within the framework of sums of random vanables

14 Conclusion and main ponts of chapter 1

In this chapter, we have tried to underline two major 1deas.

(a) The breakdown of the canonical CLT and of the “‘mean field” value of the diffusion exponent
can be due erther to very large fluctuations (broad distributions) or to long-range correlations The most
mteresting situation occurs when those statistical pathologies are induced by the dynamics of the
problem 1tself, and not introduced ab mmtio One should therefore look for possible mechanisms
generating large fluctuations and/or strong correlations Once those mechanisms are 1dentified, their
consequences for the transport properties of the problem studied can be discussed using the simple tools
developed n sections 1 2 1 and 1 3 1 It can happen that the 1dentification of the mechamism suggests a
self-consistent solution to the problem this has been encountered for polymers and should perhaps be
dwelled upon further for spin models.

More precise statements can be made using more sophisticated techniques, In the next chapters we
shall present and develop some of them, trying as much as possible to discuss the results in the language
mtroduced 1 this chapter

(b) The concepts of universality classes, fixed ponts, scaling, which have emerged in the last twenty
years within the framework of critical phenomena and the renormalization group have a very deep
statistical ongin [Cas78), the theory of stable distributions, and n particular the central limit theorem,
shows very pedagogically how the microscopic information 1s grinded and processed to extract very few
“relevant” quantities, the remaining part of it being irremediably lost 1n the tails (recall the H-theorem,
which rehies on the same mechanism) The robustness of this mechanism 1s 1n fact what makes possible
at all the description of large complex systems 1n terms of very few ““macroscopic” parameters
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While the theory of stable laws for uncorrelated variables 1s very well established, the case of
correlated sums does not stand on equally systematic ground In a sense field theory and renormahza-
tion group have handled this problem efficiently i the case of correlations generated by a Gibbs
measure; those are perhaps the natural tools to explore this path further

2. Diffusion on lattices with random hopping rates: introduction, related problems and simple results
2 1 Introduction and basic quantities

2.1.1 Random walks in quenched disordered media

The most natural model for a heterogeneous material in which the local transport coefficients and
drniving fields are hghly complex and wrregular 1s to consider a given sample as a particular statistical
realization of an ensemble, constructed by randomly choosing those local quantities according to a
certain probability distribution “Quenched” disorder means that those random quantities do not evolve
with time: this 18 usually the model considered to describe the dynamical properties of maternals
contaiming impurities, defects, or intrinsic randomness (amorphous systems), provided that the time
scale of the observed dynamical property (e.g. the diffusion of a tracer or of a carrier) 1s much shorter
than that of, € g , diffusion of the impurties, or more generally the “turnover™ time of the disorder
Many examples of such physical situations will be encountered 1n the following. conductivity of
amorphous materials or of quasi-one-dimensional 1onic conductors, dynamics of domamn wall or
dislocations, transport of a dye i porous materials (with or without flow), etc

More generally, one can consider the dynamics of a complex system as the diffusion of its
representative point i 1ts tortuous phase space (chaotic dynamical system, configuration space of a spin
glass, etc )

The models studied below are random walks on euclidean lattices with inhomogeneous transition
rates W__ from site m to site n (for diffusion on fractal lattices see chapter 6). If on the time scale of the
experiment disorder evolves slowly, the physical problem amounts to considering a given configuration
of hopping rates (W,, ) chosen once and for all with probability ¢/{{W,,. }]. One 1s then interested in the
properties of random walks 1n this quenched environment It 1s crucial to realize that one must pay
special attention to the defimtion of the various quantities of interest. It often happens that two
equivalent ways of defining a physical quantity i an ordered medium no longer lead to the same result
n the presence of disorder. In particular, one should carefully distinguish the following two averages
— Averages over the different “thermal histories” (each one being defined by the succession of hops
performed by the particle), the environment being fixed. Such averages will be denoted 1n the following
of this article by an overbar' ()

— Averages over the possible environments, according to the distribution (W, ). Such averages will be
denoted by brackets: ((-)).

The position X, of a single walker 1s a random variable depending both on the thermal history (which
we shall sometimes denote symbolically by n) and on the environment w = {W,, } The latter being
fixed, one can then obtain information on the statistical properties of X,(7; w) 1n the following ways

(1) One can study a packet of particles, all starting at t = 0 at the same utial site n,), but undergoing
different thermal histories The probability of presence on site n at time ¢, P,(|n,, 0) 1s defined by the
thermal average (a denotes the lattice spacing),

P,(tlng, 0) = 8[n — a”'X,(n; w)] ,
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and still depends on the environment It describes the shape of the packet at tume ¢ and obeys the
following master equation

d

GPO=SW,P,0-(SW,P0). @
with imtial condition and normalization

P(t=0n,,0)=8,, . 2 P,(tn,0)=1

Introducing the local currents J,, =W,_ P (t)— W, P, (t), eq (21) can be wrntten in the form of a
conservation equation,

d
&Pn(t)+%Jnm=0 (22)

(11) One can also study the time evolution of a packet of particles having some distribution of initial
positions p,(n,). Equation (2 1) bemng a linear equation, the shape of the packet at time ¢ 1s given by

p.(1) = 2 py(no) P, (t]ny. 0) (2.3)
o
An extreme case 1s the uniform distribution p, = 1/N (N 1s the total number of sites) In this case one
averages overall mitial positions and 1t 1s clear that. provided the distribution (W, ) 1s translationally
invariant, this concides with an average over environments,

1
N 2 Payenlllng. 0= (P, (tlng, 0)) (24)
where the r h's no longer depends on n, (2.4) 1s the distribution of the random vanable X (7, @) over
both thermal histories and environments.

One could also study other quantities such as the distribution of X,(7, w) over environments for a
single thermal history, etc.

21 2. Characterization of the diffusion process

2121 Behaviour of the moments, fluctuanons The shape of the packets P, (t|n,,0) and p,(f) are
conveniently characterized by their moments, 1n particular the first one measures the position of its
“centre of mass” and the variance gives an estimate of its spreading

From P, (t|n,,0), one defines the (asymptotic) velocity and diffusion tensor as

V= !Lnl (d/d)X,(n, w) ,
(25)

D, = 3 m (d/d0)[X] (n, 0) X7 (n, ) = X (1. ) X7 (1, 0)]

These quantities a prion still depend on the environment. However, 1n all the cases studied in the
following 1n which diffusion 1s normal, 1t will turn out that they take, with probability one, a value
independent of the specific environment chosen [and which 1s a function only of a few parameters
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characterizing the distribution (W _ )] This is the so-called “‘self-averaging” property, which phys-
1cally relies on the fact that at large times the whole configuration {(W,, )} has been properly sampled
Despite 1ts clear physical origin, up to now this property has only been “‘rigorously” proven in a limited
number of cases (see section 3.1 and [Asl89a]). However, as will be explained below, one should rot
conclude, even when this property holds, that at large time the full diffusion process no longer exhibits
fluctuations with respect to the environment.

When the effect of disorder 1s not dramatic, one expects a fimite (1 e. non-zero and non-infinite)
diffusion constant, together with a finite velocity if the process 1s biased; this will be called ““normal
diffusion” in the following All other situations will be called “‘anomalous™, this encompasses
non-linear time dependence of X, in the presence of a bias (global or local) and non-hinear dependence

of the spreading X°X* — X°X® We shall encounter situations in which these quantities follow
non-Brownian power laws as well as a more complicated time dependence than power laws
The centre and width of an arbitrary packet p,(¢) also define a velocity and diffusion constant,

d
V[p(]] =a ;1_{2 a z npn(t) ’
(2 6a)

Doglpol= 4 1m S (S 1,00~ S 1,0 1y, 0)

For the same physical reason as above, these quantities no longer depend on the environment in
general Furthermore, the self-averaging property for V in (2 5) imples that V[p,] in fact does not
depend on the 1nitial distribution: V[p,] =V

Vipolt+ -~ 2 n 2 py(no)P,(tlng, 0) = 2 py(ny) 2 nP,(tlny, 0)~Vr. (2.6b)

Ths 18, however, not always the case [Asl89d, Dou89a] for the diffusion constant D[p,], which can be
put in the form,

Daﬁ[po] D+ 5 hm (2 pO(nO)nanB Z po(no)n, 2 Po(”o)” )
(2 6¢)
7, =2n,P,(ln,,0).

The last term 1s the fluctuation of the centre of mass position, which 1n general does not vansh at large
time, and depends a prion on the shape of the initial distribution py(n,). In particular, for a uniform
mitial distribution p,(n,) = 1/N, D[p,] measures the spreading of the full distribution {P,(t|ny,0)),
and will for this reason be called D,, (“av” standing for “average”, D,, has been called “annealed
diffusion constant” n [Dou89a], but 1t should not be confused with the diffusion constant of the
annealed model):

p =& hm d ((x XF) - (X5)(XP) ).

aB 2

Four remarks
— As 1s clear from (2.6c), the reason which allows D,, to be different from D 1s the sample to sample
fluctuation of the corrections to the leading behaviour of the thermal average X, When diffusion 1s
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normal, this fluctuation turns out to exist only in one dimension and when a global bias exists [Dou89a]
D,, = D in more than one dimension, when diffusion 1s normal Note that the fact that (X7 ) /(X )* -1
behaves at most as 1/¢ precisely guarantees the self-averaging property of the velocity.

—One can wonder whether D[p,] can have some continuous dependence on p, As pomted out n
[Dou89a], for “reasonable p,”, D and D,, are the only generic values. For a superposition
p8, ., + (1= p)/N, one easily sees that D[p,] = p’D +(1-p*)D,, [Dou8%a]

- D,, could have some relevance to experiments, despite the fact that it involves an average over
environments Suppose that one performs a diffusion experiment in a system made up of one-
dimensional channels, following n each one the diffusion of a concentiated packet (fig 2.1) Each
channel being a different environment, one realizes an average over samples 1if one observes the packet
with some low resolution This picture (fig 2 1) clearly illustrates why one has D < D,_, as 1s clear from
(2.6c) Furthermore, ergodicity suggests that the histogram 1n time of the positions of a smgle particle
for fixed 1 and w should coincide with (P(X, ¢)), and thus be characterized by D,,.

— When diffusion 1s anomalous, one should realize that the typical X:X* — X°X” and average
(X7XP) - (X?)(X?) spreading can have a very different behaviour mn the presence of a bias (even
only a local bias, zero on average) Thus 1s particularly dramatic 1n the case of Sinar’s diffusion discussed
in section 3 3, as first ponted out by Golosov [Gol84] A clear-cut example 1s provided by the layered
medum of section 1 3 2, which, despite the absence of a global bias, 1s such that X; — X* ~ Cr>* while
(X})~C, """ with C, > C. as pomted out in [Dou89a] The values of C and C,, are computed 1n
appendix C, where these fluctuation properties are studied n detail
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Fig 21 Physical situation where one would measure D,, instead of D the medium i1s made up of one-dimensional “fibres” along which the
particles may diffuse The diffusion front for each channel 1s characterized by D. but the position of the centre of mass depends upon the channel If
one cannot “resolve™ the different channels, one will observe the envelope of the whole diffuston front, which has a width D, , obviously larger than
D
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212.2. On the existence of a generalized CLT for the distribution of the position As discussed at
length 1n chapter 1, for an ordered lattice P(X, t) obeys the central imit theorem, which provides a
precise charactenization of the diffusion process in the large-time limit. One would like to extend such a
charactenzation of the probabulity distribution of X (7, ) 1n the presence of disorder n the cases where
diffusion 1s normal as well as when 1t 1s anomalous One can consider several distnibutions, € g ,

(i) the distribution over thermal histories P(X, t), for a given environment,

(1) any of the distributions p(X, t), and 1n particular the average one (P(X, 1)), with respect to
both thermal histories and environments,

(m) one can also construct the histogram of the positions of a single particle for a given thermal
history and environment

For each of these distributions, the question 1s whether 1t 1s possible to find V(f, ) and £(f, )
such that 1t reaches at large time a scaling form (d =1),

1
D) AIX = V(Ol/€@) (27)

(in the usual sense of a CLT, that 1s, a scaling region being understood) In addition, one can wonder
whether 1t 1s possible to choose V(f) and £(¢) to be functions of ¢ only, devoid of any fluctuations with
respect to the environment In all the cases considered in the following, the answer will turn out to be 1n
the affirmative provided no local or global bias exists (W, = W, ) In the opposite case, 1t can happen
n low dimension, or in the presence of long-range correlations that { P(X, t)) but not P(X, t) satisfies a
generalized CLT with non-fluctuating V(¢) and &(¢). This 1s obviously the case, for normal diffusion,
whenever D # D, Examples with only local bias and anomalous diffusion are provided by the layered
medium of section 1.3.2, for which this question 1s studied in appendix C, and by Sinar’s random walk
(section 3 3) Finally, general considerations about ergodicity suggest that the histogram should n
general satisfy the same CLT as (P(X, 1)) However, 1t could be that 1n some cases ergodicity 1s broken
(see section 3 3)

A quantity we shall often be interested 1n in the following 1s P(X =0, #{0, 0), that 1s, the probability
of finding the particle on its mtial site after time ¢ It charactenizes the relaxation properties of the
model. Even at large time, this quantity may contain different information than the one provided by the
CLT, since X 1s kept fixed and ¢ arbitrary: X =0 can be mside or outside the scaling region and may
thus be unrelated to the scaling function f (if any). As 1illustrated, e g , by section 3 3, P(X =0, t) is not
expected to be self-averaging n general [Del89, Bou89b] (see, however, [Der83c] for a discussion of the
symmetric case W,, =W, )

213 The steady state

Starting from any imtial distribution function, an equihbrium state can be reached - the boundary
conditions bemng chosen such that no ‘“‘macroscopic” current exsts —1if all local currents can vamsh
simultaneously, that 1s, 1f the “detailed balance” condition 1s satisfied,

PRIP =W, IW,, = J.,=0 (28)
For this condition to be satisfied, the product

H an / Wm'l

12
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must be independent of the path €, linking any two sites n, and n, If this 1s not the case, no true
equilibrium distribution exists but rather the system reaches a dynamical steady state with uncom-
pensated local currents An example of such a situation 1s presented m the next section.

214 Three classes of models
We shall mainly be concerned with the three following classes of models

(A) Traps Each lattice site 15 considered as a trap with mean desorption time 7, (fig 2 2),
W=z, ., W _=1/z, (29)

where z 1s the lattice coordination number The master equation reads

d _x P P()

dr P.(0= ; 2T, 27, (2 10)
and the equilbrium density satisfying (2 8) 1s

P,

(B) Symmetrical barriers Each Link of the lattice acts as a symmetrical barrer (fig 2.3),
d

W =Wo o 3 Pa) =2 W, (P,(1) = P,(1)) (211)

In this case the equilibrium density 1s uniform* P;® = constant

(C) Random forces On each link of the lattice lives a force F,, (=—F, ) (fig 24) and the
transition rates are activated,

W,, =W,exp(~F,,al2kT), W, =W, exp(+F, al2kT), (2 12)

where kT 1s the temperature This model does not i general*’ satisfy detailed balance and local

MDA M '
NP2 ANV
T/ B
G — P -
R S
Fig 22 Schematic view of model A diffusion among static random Fig 23 Schematic view of model B random barners controlling the
traps local current

*) Condition (2 8) can be satisfied only if the discretized curl of F vamshes, 1 ¢ , tf F 1s the gradient of a potential
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Fig 24 Schematic view of model C random forces, creating a local Fig 25 Random resistor network, with each node connected to the
random bias ground by random capacitors

currents can survive 1n the stationary state Only if the forces F, are the “gradient” of a potential U,
F,,=(U,—U,)/a, wil an equilibrium state exist. It then takes the Boltzmann form, P{* ~exp(- U,/
kT). (Note that this 1s always the case 1n one dimension.) The opposite case, where F is divergenceless
(div F = 0), corresponding, € g., to an icompressible hydrodynamic flow, clearly leads to a stationary
state with closed current loops, indeed, the stationary state reads mn this case P, = const. = P,, and
hence

=W, —W,_)P,=2W,P,smh(aF,, /2kT).

The diffusion behaviour for models A and B will be given 1n this chapter, in all dimensions. Type C
models, far more complex and richer, will be dealt with in chapters 3 (d =1) and 4 (d >1).

2.2. Equivalence with electrical and mechanical problems

The diffusion problems presented above have electrical and mechamcal analogues of great practical
importance (For a general reference on this topic, see [Doy84] )

2.2.1. Random resistor and capacitance network

The evolution equation of the charges of the capacitances C, located at the nodes of the electrical
network drawn 1n fig 2.5 reads

dq,/dt=2a,(q,/C, —q,/C,). (213)
This 1s 1dentical to the master equation (2 1) upon the identification
Pn(t) © qn(t) ’ an A o-nm/cm * (2 14)
The above three types of models correspond to the following choices:
* C, random and o,,, = o for the trapping model (A) with local trapping times defined by z7, = C, /o
(which is the local time constant of the capacitance C,).

* C,= C and g,, random for the symmetrical barrier model (B), with W, =g, /C In this case the
potential V, = q,/C follows the same equation. The “equilibrium” situation 1s obviously V_ = constant.



168 J -P Bouchaud and A Georges, Anomalous diffusion n disordered media

* C, random and o,,, ~VC,C, corresponds to model C (in the potential case), with C, = exp(U, /
kT)

2211 The *“Enstein relation” for the random resistor network. If only the resistances are random
(case B), the average conductivity of the lattice o and the diffusion constant D of the equivalent
symmetrical barrier model are related by

o/C=Dla’, (2 15)

whenever they exist (a 1s the lattice spacing) A general denvation of this property, due to Derrida
[G14], 1s given in appendix D Three very important remarks must be made, i order to clanfy
somewhat pownts which are often obscure n the literature (see, however, [Gef87])

(a) We have improperly called eq (2.15) an “Einstein relation’; mn fact, 1t 1s not a statement about
the response of a diffusive particle to an external electric field, but only a “translation” between the
electric language and the random walk language. In particular, a random network subjected to an
external potential drop 1s not related to a biased random walk problem (see chapter 5 for a discussion of
the response of random walks to a bias). We shall no longer use the term “Einstein relation’ n the
present context 1n the following

(b) The denvation of ref. [G14] in fact holds for periodic lattices obtamed by “tiling” boxes of size
LY all containing the same random configuration of W, It 1s, however, expected to be true i all
51tuat10ns where there exists a length scale above which the medium can be considered as homogeneous
(for example, the percolation structure above the correlation length &)

(c) This theorem does not i general extend to the case of random capacitors (an example will be
given below in which the charges g, diffuse anomalously with D = 0, while the conductivity 1s fimte) nor
to the finite-frequency case If diffusion 1s anomalously slow (e g on the percolation cluster, cf section
6.3.2), one can argue that the finite size d ¢ conductivity of the sample will scale as (» 1s the diffusion
exponent)

a(L)~D(L)~ L' ——0 (2 16)
At finite frequency w, a length scale appears (the penetration depth of the charges), connected to w

by L, ~ w"". One very often argues [Gef83] that for @ < L, < L, ¢ becomes independent of L and has
the scahng form

o(L, ®)=o(L,0)faol""), (217)
leading to
o(L; )~ (1w)' > (218)

This, however, cannot be true in general (see also sections 22 1 3 and 6 3 2). the complex impedance
(defined, e g , by Uy/I, with U, =0, A and B being the end points) of a one-dimensional regular chain
1s of the form [ f(w)]" This 1s also true for the fractal Koch curve with a different f(w) [Gef87]. Scaling
relations of the form (2.17) are nevertheless useful when one deals with the wnput impedance of a
random network; see section 2 2 1.3 below (and section 6 3) for a detailed example
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2212 Diffusion and conductvity a second theorem [Doy84, Gef87] Another theorem relating the conductance between
two ponts of a network (say A and B) and properties of the random walkers on this network may be obtained This theorem
makes the following intuitive relation precise

The conductance 3, between any two points 1s proportional to the total probabihity that a walker starting on A reaches B
(while never returning to A) i an arburary number of steps, the weight of a path €, simply beng

W[€,]= !—[ W//Zk W, (219

A trivial example on which one sees this theorem at work 1s presented schematically 1n fig 26 One readily sees that

< T, + o) + o) + ) 0,050,
g=0 5 g=——123
oyt o )oyt o) (0,+0,) (0, + ‘73)2 (o, + 0':)3(0': +a,) ' o0t 0,05+ 0,0,
which reproduces the rule for resistances 1n series

A proof 1n the general case can be found 1n appendix D

2213 Hustranon chan with a broad distribution of capacitances [Hul89] Consider the electrical network drawn in fig 2 7
The conductances o, are constant, equal to o, while the capacitances are chosen according to a “broad” distribution law,

WO)~C" . Cow

According to the above general discussion, this corresponds to the problem of diffusion among random traps of release time
7, ~ C,, which we have considered in section 12 3 1 It1s obvious that the end to end conductance, 3,5, 1s equal to o whatever the
distribution ¢, even 1n the case u <1, n which the diffusion constant vanishes in the associated diffusion problem This illustrates
the remarks made above concerning the non-existence of an “Einstein relation”

The diffusion properties are nevertheless of nterest for the electrical problem, in particular if one considers the input
admuttance A(w) of the chan [Rig88] Indeed, 1n a period w ™' of the apphed voltage, the charges diffuse over a penetration depth
L (w) given by (2 40) below,

-1/2 —pl(l+p)
L@~o ", u>1, Lw)~o™ ", u<l (2 20)
The resistive (real) part of the admittance 1s thus given by that of L () conductances in seres,

G(w)=Re A(0)~ o/L (o), (2 21a)

. Lt

Fig 2 6 Illustration of the theorem series addition of three resistors Fig 27 Cham of random capacitors, chosen with a broad distribu-
(section 22 12) tion y(C)~C "** for C—
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whle the capaciive (1imaginary) part 1s that of L (@) random capacitances i parallel,

L(w
1 P
Clw)=-=Im A(w)~ 2 C, (221b)
n=1

The last sum, as usual, behaves as

Cw)~ L), w>1, C@)~[Lo)]™*, p<l
The ratio of the real to imaginary part of the admttance 1s thus

Re A(w)/Im A(w)~1., VYpu, (2 2ic)
both bemng of order

Re A(0)~Im A(w)~ L' (»)

As recently pomted out by Mitescu et al [Mit89], Kramers—Kromg relations show that if (2 20) and (2 21) are true then the
phase of the admittance A(w) 1s exactly given by

-7 _Z L
phaseA(w)—4, uw>1, phase A(w) 2 T4 uw<l, (2 22)

independently of the frequency (See also [Cle84 90] )

The same results may be obtamed using *“scaling” arguments For a chain of length L, one expects A(L, ) ~ A(L, 0)f(L (w)/
L) Obwviously, A(L 0)=0cL™", demanding that for L > L ,(®) the admittance ceases to depend on L, one recovers at once
AL, w)~ Lp(w) Note, however that the frequency dependent end to end conductivity has the following “localized”
behaviour

o(L, o)~ (a/L)exp[-L/L (w)]

22 2. The random masses and springs model
Consider the network of masses M, and springs drawn m fig. 2.8 The displacement X, of the nth
atom from 1ts equihbrium position follows the equation of motion
dZ
M, -5 X,= 2K,.(X,-X,) (2 23a)
m the zero-friction limit, or

d

Y 5 %= 2 K,.(X, - X,) (2 23b)

in the large-friction mit The problem 1s often called scalar elasticity, since egs. (2.23) can be written
for each component of X independently For work on ‘“vectorial” elasticity, see, e.g., [Fen84,
Rou87a,b, 88]

Fig 28 Random masses and springs network
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Let us specialize to the case M, =M The matrix A defined by

Anmanm’ n:,ém’ Ann-__—zKIn’
1

has only negative eigenvalues A, corresponding to the frequencies of the purely propagating modes
(phonons) of eq. (2.23a), —Mwi = A, and to the mnverse relaxation terms of the purely damped modes
of eq. (2.23b), 7' = —A_/y. The density of those eigenvalues p(A) 1s simply related to the probability
of finding the particle on its initial site in the symmetric barrier model defined by W,, =K, .

Indeed, the vector P={P(t), 0=:=<N} evolves according to (d/dt)P = AP, from which one
formally deduces

P(t) =e"'P(0) .
One thus has

P (t|n,0) =[e"] (2.24)

nn *

The average over all starting points of the probability of being at the initial site 1s then simply

PO(t)EN_lTre“=fp(/\)e“ da,
(2.25)
PN=NT28(r-1,).

—vd

If P,(f) decays asymptotically as Py(t)~t " the density of phonon modes in the lattice 1s, for low

frequencies,
plw)~w™ ™, 00 (2.26)

(we have used p(w) do = p(A)dA, A = —w?)

For a regular lattice, p(w) behaves as ©~' when w — 0; subdiffusive behaviour — generated by low
values of K, ~corresponds to an enhancement of the low-frequency density of phonons; m other
words, the lattice 18 anomalously “soft”. Let us finally notice that the diffusion constant in the diffusion
problem corresponds to the square of the (long-wavelength) sound velocity associated with eq. (2 23a)

2.3. Continuous space formulation: Fokker—Planck and Langevin equations
Very often the diffusion of a point particle 1s described by a continuous space Langevin equation,
y dX/dt=F(X) + 5(t), (2.27)

whi)ch corresponds to the equation of motion of a strongly damped (or massless) point particle subjected
to*

*) The possibility of separating F and 7 comes, as usual, from the assumption of “slow” and “fast” degrees of freedom involved i the interaction
with the medium
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- a force F(X), modelling the interaction with the medium,
- a thermal noise 7(¢), randomly evolving with time, representing the interaction with a thermal bath
Usually, one takes white noise,

M, (Mg (1) = ykT8,58(1 — 1) , (228)

where T 1s the temperature
From the Langevin equation one canomcally obtans a Fokker—Planck equation for the probability
distribution P(X, t) (see, ¢ g.. [G3]),

aP(X, t kT
%—L—dw, J(X,t)=§P—D(,VP, Dy== (229)

We wish to show here how eq (2 29) can be obtained as a continuum limut of the master equation
(21) Indeed. consider the following form for the transition rates W, ., W (we consider for

nt+tln

simphcity the one-dimensional case, but the generalization to higher dimensions is straightforward),

D, i aF, .\
W — n.n ex ( nn )
n.n+1 a2 p 2')’Dn .
(2 30)
W _Dnn+1 X( aan+I)
n+ln a p 2,yDn el
where a 1s the lattice spacing. D, ., corresponds to the local temperature, with the associated ““trial
frequency” D, ,.,/a’ * W, ,.,and W, .,  are thus taken in activated form, with a local potential

difference AU, = aF,

. nr1 Expanding the W’s in powers of a, one thus obtains

EP :1(D +lPn+1_Pn__D“lnPn_Pﬂ—1>+_1_(Fn1’" Pn+Pn~1_an+1 Pn+1+Pn)
de " g\ 7" a el a a v 2 v 2
! < Frnu P, P Frot (P, - P ))+0( ) (231)
+ Q N - - 7— n - n— a
8 yZDnthl ( n+1 n) Y-Dnn_l 1
Defining
1
hn% 5 Pn=X/a(t) = P(X' t) " (2 32)
one recovers, 1n the continuum lmit, the Fokker—Planck equation,
d _ 9 ( F(X) )
5 P(X,t)= 5X P+ D(X)
In d dimensions, 1t reads -
%It—) - v(—'iyw Pt D(X)VP) (2 33)

*'In the heavily damped limit the tral frequency corresponds to the diffusion time m the potential wells
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In the above example, the local temperature has been defined on the links: yD, . One could very
well have chosen to define the temperature on the sites,

D +1 ( aan+1> D <aFn,n+1)
— n — 2 = —:l 4
Wn n+l a2 CXp ZYD,,H s Wn+1,n a’ CXp 2')’D" (2 3 )

In this case, the continuum limit corresponds to a different Fokker—Planck equation,

. o FX)
2 p(x.1) (-2

d
= P+ D(X)P) . (2 35)

The difference between eqs (2.33) and (2 35) corresponds to two different order prescriptions m
stochastic calculus (see ref [G5, G8] for a thorough discussion) It 1s seen that they reflect two different
physical situations More generally, depending on the discrete model underlying the Fokker—Planck
equation, the diffusion term reads

9 p 9 q) =
aX(D(X) aXD(X)P , ptg=1.

Let us finally mention that the use of a fluctuation—dissipation theorem, implicit in the above
presentation, imposes that

[(3/0X)In D(X)| <1/ MyD(X)

(M 1s the mass of the particle). This condition expresses the fact that the particle must have time to
become thermalized 1n the non-uniform environment For the corrections to (2 33) arising from a small
but non-zero mass in eq (2 27), see ref. [G8]

2.4. Random traps and random barriers* qualitative analysis

In this section we analyse the diffusion behaviour of random traps (A) and random barners (B)
models, for a lattice of arbitrary dimension Once the important statistical mechanisms are 1dentified,
this can be achieved in a very simple manner using the tools of chapter 1 We thus postpone more
sophisticated techniques to chapters 3 and 4

2.4.1 Random traps

We proceed 1n a way very similar to section 12 3 1, where the ‘“‘annealed” version of this model
(CTRW) was dealt with. The difference here lies in the fact that the trapping time at a given site is the
same for each wvisit of this site (“quenched disorder”), thus inducing a correlation between the
successive trapping times encountered. Whenever this correlation 1s relevant, 1t will induce a diffusion
law different from that of the corresponding “annealed” problem (CTRW).

Let N be the number of jumps, and {7} the trapping times encountered The time ¢ and average
position are still related by egs (1 25)-(1.27),

Xi=lN, t=27’,,

[24
=1
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the last sum no longer being a sum of independent random variables. One 1s nevertheless led to
distinguish the same two cases as mn section 12 3

(1) If (7) 1s fimte, ¢ behaves as N(7) for large N (whatever the correlation of the 7, 1s) and the
diffuston behaviour 1s thus the same as for a CTRW,

X ~2D ¢, D, =012r) (2 36)

(on a hypercubic lattice D = (a”/2d){7) "' =a’(1/W)™")

(u) If the 7, are distributed according to a broad distribution [¢(r) ~7 ' ™), r— o] with 0< u <1,
(7) 15 infinite, and one has to treat properly the correlations in the sum (1.27) Following section 1.3 1,
one has to estimate the number of “effectively independent” trapping times in (1 27), that 1s, the
number §,, of different sites visited by the Brownian motion between traps. One has (cf appendix A)

Nd/z’ d<2,
Sy~{N/InN. d=2, N-oo (237)
N. d>2,

The results of section 1.2 1 on broad distributions can now be applied to the sum ¢~ (N/S,) £%¥ 7,
leading to

(~NSV', 0<u<l, t~NlnS,, p=1 (238)

Combining (2 37) and (2 38), one has the following results
—1If d >2, each trap 1s visited only a finite number of times as N — o; correlations are not strong enough
to induce a different diffusion behaviour from the annealed case,

Xo~t* 0<u<l, X.~tllnt, p=1 (2 39)

1-d/2+d/2
N ad

- If d <2, each site 1s visited infinttely often when N— ; one has ¢ ~ , and a new diffusion

behaviour arises,

2v
>z 7, lv=2-d+dip, 0<p<l,
X {t/ln t, w=1 (2.40)
In the margmal dimension d =2, (2 40) 1s modified by logarithmic terms if 0 < p <1,
X2~ t*(ln 1)+ (241)

The derivation given here follows [Bou87c], but the results (2 39) and (2 40) were first obtained by
Machta using a real-space renormalization method [Mac85]. It 1s worth noticing that the “fixed point”
(equivalent model at large scales) obtained by this method is simply a CTRW for d>2, while
correlations are no. ehminated at large scales for d <2 (the quenched nature of the problem remains)
We refer to [Mac81, 85, Bro89a,b] for details on such real-space renormalization methods.

The diffusion exponent » 1s plotted as a function of the dimension 1n fig 29 One should note that, in contrast with naive
inturtion, diffusion becomes slower as the dimension increases (for d <2) As noted mn [Ale81], this 15 because the probability to
visit a trap with a long trapping time increases with d (since the larger d, the faster S, grows) These “deep” traps control the
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Fig 29 The diffusion exponent »( ) for model A as a function of the space dimension d

diffusion process, the largest trapping time encountered 1s of order

gl t”dm, a<2,
Tmax ~ON t”"" d>2'

and thus increases more slowly with time for small dimensions

Whether the full distibution P(X, t) satisfies a “generalized CLT” for this model has not been
rigorously established. When diffusion 1s normal, it 1s clear that this 1s indeed the case, with a Gaussian
limit distribution. When diffusion is anomalous and d > 2 the renormahzation procedure of [Mac85) and
the above dervation strongly suggest that P(X,t) does reach a scaling form for a given sample
analogous to the one of a CTRW (see section 1.2.3.1)

2.4.2. Random symmetric barriers

Random barriers (type B) models are most easily analyzed — at least at a qualitative level — using the
equivalence with a random resistor network (section 2 2 1). They turn out to have very different
diffusion properties in one dimension [G10] and 1n more than one dimension [Ale81}

2.4.21 One dimension In d=1, the problem simply amounts to a series addition of random
resistances, o, ' = (CW.1+1)_1 The total conductivity of a chamn of N units (N jumps for the diffusion
process) is thus given by

N1
a(N) Z o (242)

Again, two cases must be distinguished:
(1) If (1/W) 1s finute, the total conductivity has a finite limut for large N,

N

U(N) N gl — (1/0) (2.43)

Making use of eq. (2 15), which relates the conductivity to the diffusion constant, one finds that the
latter 1s finite,

D=d’s/C=a’(1/W)"". (2.44)
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Analytical methods allow one to obtain finite-time corrections, together with systematic short-time
expansions (see ref [{G13] and references therein)
(n) If (1/W) = +oo, for example, 1f 1/W, | has a “broad” distribution,

YW)~WH ! 0<u=1, W—0,
then the total conductivity vamishes for large sizes, as
o(N)~N""_ 0<u<l, oN)~(nN)"', up=1 (2 45)

The diffusion behaviour can be guessed from this result by assuming that the “effective diffusion
constant™ at scale X, D(X) = X%t has the same scale dependence as o(N) [cf. eq (2.16)]. This leads
to a subdiffusive law [D(X)~ X' ~""*]

> [, v=Epi(ltp), 0<p<t,
X {t/lnt, w=1 (2 46)

This can of course only be considered as a rough argument, since 1t makes extended use of relation
(2 15) between o and D 1n some transient regime. The result (2 46) 1s nevertheless the correct one
[G10], as will be shown by analytical methods in section 3 2

One thus observes that, in one dimension, the asymptotic diffusion behaviour of random barrier models 1s identical to that of
random traps provided one 1dentifies W, , ,, =W, ,, , with 1/27, Ths 1s true 1n the normal case, eq (2 44), as well as in the
anomalous one, eq (2 46) This was to be expected on physical grounds Indeed, for a given hnk, 1t 1s always possible to find an
energy barrier approximately equal to that of this link, lying at a finite distance (fig 2 10) (the probability that this can be
achieved 1 a distance smaller than L reads 1 —exp[—L AW (W)] for a given precision AW) In one dimension, the region
delimited by these two approximately equal barrers can be viewed as an effective trap in a coarse-gramned picture of the lattice
(fig 2 10) Barners and random traps models are thus expected to behave similarly at large scales (long time)

Note the existence of a duality between site and bond disorder in one dimension Indeed, the time evolution of the current

J oo =W, . (P — P, ) for symmetric barriers obeys
1 d
w dr wnet = w2 (247)

nntl

This comcides with the equation satisfied by 27,P, i a trappig model with 27, = W

nntl

2422 Higher dimensions In more than one dimension, this duality no longer holds The local
currents of a symmetric model W, =W, obey the following equation.

1
W—@J" EJ,M E-’ (248)

AA-A‘-

Fig 2 10 Duality between models A and B m one dimension effective trap hmited by two comparable barriers
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(where the two sums are over neighbours of m and n, respectively). This defines a lattice structure
which 1s no longer identical to the original one. It follows that random barrier models do not have the
same diffusion behaviour as random traps in more than one dimension [Ale81]

Indeed, we now show that very high energy barriers can always be avoided thanks to the existence of
several paths, and as a result that diffusion 1s always normal, even 1f the (W_') have a “broad”
distribution. This 1s most easily seen following a percolation type of argument [Ale81] for the equivalent
resistor network Assuming that all resistances p > p_ (i.e. W <W_) have been removed from the
lattice leads to a lower bound for the conductivity o (since the removed bonds are n fact infinite
resistors). This lower bound 1s certainly non-zero provided p_, can be chosen to be a fimte cut off such
that p(p,,) > p., where p_1s the bond percolation threshold and p(p, ) 1s the fraction of removed bonds,
given by

1-p(p,) = [ $(p)dp .

Pm

Thus, as long as p_ <1 (1.e., provided d > 1) the conductivity (and accordingly the diffusion constant) 1s
non-zero

Calculating this diffusion constant (or the conductivity of the associated random resistor network) 1s,
however, a difficult task (it contains percolation as a limiting case!), no exact expression 1s known in
arbitrary dimension, 1n contrast to the random traps model. This 1s equivalent to finding the
permeability of a disordered porous medium [Mag89}], the magnetic susceptibility of a random mixture
of magnets, the permuttivity of a mixture of dielectrics [Ber88], etc. For references see [Eto77, 88].

Two classes of methods can be used systematic weak disorder or cumulant expansions [Zwa82,
Der83b, Den84, Kar84, Nie85], and effective medium types of approximation The former will be
discussed 1n section 4 2.3 for a general lattice hopping model, while the latter 1s briefly presented in the
next section A field theoretic formulation of the random barrier model can also be given, using, ¢ g ,
replicas [Ste78] or interacting Bose and Fermu fields [Car83a] This can be used as a starting point for
various expansions [Kar84] or for devising alternative effective medium approximations [Car83a)

In addition, one should mention that ngorous upper and lower bounds can be obtained on
variational grounds [Has62] Finally, an exact result 1s known in the two-dimensional square-lattice or
continuum case, for bmary distributions (two-phase mixtures),

(W) =ps(W—W,) + (1= p)s(W-W,).
Then, a duality type of analysis [Men75] allows one to show that
D(W,, W,, p)D(W,,W,,1-p)=VD,D, (2.49)

(D, and D, are the diffusion coefficients of a homogeneous sample with W=W, and W=W,,
respectively). In particular, if 1 and 2 play a symmetrical role (i.e., p = 1/2), then

D=vD,D, (2 50)

(A generalization of this result to a tensorial local “diffusion coefficient”, which arises 1n the study of
the a.c susceptibility of magnetic maternals, can be found in [Bou89d].)
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2.4.2.3. Effective medium approximation. The effective medium approximation (see, e g , [Lan77,
Gub77, Kir73, Eto88] for reviews), 1s in a sense a kind of mean field theory. The 1dea 1s the following'
one assumes that the diffusion coefficient D (or conductivity, etc.) 1s known. The random medium 1s
then replaced everywhere but 1n a small sphere by the equivalent “effective” medium. One then
successtvely fills the small sphere with the different constituents : of the imitial random medium, each
with 1ts own weight ¢, and computes the new diffusion constant,

D,=D +3D(D, D,) (251)
D 1s then self-consistently determined by the condition

2 4,3D(D. D)) =0, (2 52)

stating that, on average, the correction induced by the “impunty” vanishes The method 1s thus clearly
in the family of “molecular field”” approximations, but 1s optimal 1n the sense that 1t reproduces all the
previously listed known results 1t 1s exact 1n one dimension, and for weak disorder satisfies the rigorous
bounds, and yields the special result (2 49)' In view of 1ts interest and usefulness, we quote here the
self-consistent equation m more explicit form (for a hypercubic lattice in d dimensions),

a f Weua — W
ETra dW (W =9 2.53
WEMA w( ) W+ (d - l)WEMA ( )

Generalization to non-zero frequency can be found in [Web81, Der83b]

Diya =

3. One-dimensional models

This chapter 1s devoted to the study of one-dimensional hopping models General analytical
techniques are presented in section 3 1, the case of random symmetric barniers W, , =W, ., 18

considered 1n section 3 2, and the rich variety of anomalous diffusion properties of the asymmetric case
with bond disorder 1s discussed at length 1n section 3 3

31 Green function methods, calculation of the velocity and diffusion constant, nature of the fluctuations

In this section we shall present Green function techmques for a general one-dimensional hopping
model, allowing one to obtain explicit expressions for the velocity and diffusion constant. That such a
calculation 1s possible in one dimension relies on the fact that the constant current solutions of the
master equation (2 1) can then be obtamed 1n exphicit form. This general analysis was first performed
by Dernida [Der83a], making use of a periodization of the medium. Further developments have been
achieved in [Asl89a.b}

In order not to deal from the beginning with the more complicated discrete case, we shall illustrate
the techniques on the continuous model described by the Fokker—Planck equation (2 29) The basic
quantity used 1n the following 1s the Laplace transform,

4

P(x, x,, E) =Ie_E'P(x, t|x,,0)dt, 31

0
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where P(x, t|x,, 0) denotes the solution of (2.29) with imtial condition
P(x, t=0|x,,0) = 8(x — x;) (32)

In the discrete case, we shall define in the same way P (E) from the probability P, (f) with imtial
condition P (t= )= 8,,. These quantities are m fact Green functions of the Fokker—Planck (or
master) equations (2 29) [or (2 1)] Indeed, they satisfy

d d d
(E~ Ho) Pl 5y E) = 8(x = x,) . Hep= e (D0 ) = = [F() ] (33)
(in the following we set y=1), and similarly

EP (E)_[ nntl n+1(E)+ non- 1 n— 1(E) ( wetn T W, ln)P (E)]" (3 4)

31 1. The Green function at E=0

3.1.1.1. Constructing the steady state. For E =0, these Green functions have a simple physical
meaning As 1s clear from eqs (3.1)-(3.3), they correspond to the steady-state probability generated by
a source of particles located at the initial site, and emitting one particle per unit time Accordingly, the
current associated with this steady state reads (for a particular choice of boundary conditions)

Jx)=1, x=x,, Jx)=0, x<x, (35)
(and smilarly J, ,,, =W, ., ,P,.—-W, . P, =1for n>n,and 0 for n<n,)

This remark allows one to construct this steady state in explicit form, for an arbitrary configuration

of the hopping rates, from the knowledge of the constant-current solutions of the master equation. Let

us begin with the continuous case, for which the general form of a solution with constant current equal
to J reads

P,(x) = CIF(y)

dy ) ex < D((?) z) (36)

in which b and C are arbitrary constants The first term 1s a zero-current solution and the second term 1s
obtained from the first one by “varying the constant C” These two constants are fixed by boundary
conditions We shall consider first the problem on the whole line |-, +=[. To fix orientation let us
assume that F(z) 1s positive for large z (1 e, n the case where F(z) and D(z) are random, we shall
assume { F/D) >0). Then imposing the decrease of P(x, x,; E = 0) for x— — and continuity at x = x,,
leads to

& ([F) _
, beo) J D(y) Xp( D(Z) d ) X=Xq, a7
x,xy; E=0)=
kexp( D((y)) dy) P(xy, xy; E=0), Xg -
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When specialized to the non-random case with D(x) = D,, F(x) = F, >0, this formula reads
» X=X,
X=Xy,

F,
ordered(‘x ‘x()’ E 0) {F (3 8)

—(Fy'Dy)lxy—v)
0 e 00 0 5
which of course can also be obtained by direct Laplace transform of the Gaussian distribution. The
exponential decrease of the steady state for x < x, stems from the bias towards x >0, and the velocity
V,(=F,) 1s related to the flux at infinity.

1/‘/0 Pord( ‘x()’ E = 0) - Pord(_oo’ X(), E = 0) (39)

This whole construction can be repeated for a general discrete hopping model with only shightly more
involved calculations For n > n,,, iteration of the constant-current condition,

W . ...P.—W

n+1nn nn+ltn+l T

1 forn=n,,
0 forn<n,,

allows one to relate P,(E=0) and P, o(E =0),

n+N-—1 - n+N-1
= W,
= = + — 17 >
P,,(E 0) VVn+1 n 1%1 W+1, 1:[ W+1, nHV(E 0) =n VV,+1,, » n=ng,

(3 10)

ng—1

P(E=0)=P,(E=0) [] -~

Boundary conditions remain to be imposed Let us again consider the problem on the whole line and
assume that the product

n+N-1 W o n+N—1
H VV” ”exp( 2 ln(vvj,ﬂ/vv,nj)) (311)
j=n ]+1] j=n

vanishes for N—x= In the random case with bond disorder, this 1s msured with probability one
provided

(In(W, i1/ W,10)) <0, (3.12)

which amounts to saying that the mean bias 1s towards n >0 [see eq (2.12)]. One then comes up with
the discrete generalization of (3 7),

1 x 1 1—1 W .
+ H = , h=n,,
Wn+l n r=§+1 vv,+1 ; j=n W/]*‘l s 0
PAE=0)= nl W (3 13)
P (E=0) 1] 3= n<n,

For a given set of W,, the series on the first line converges with probability one under the same
condition (3 12)
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Alternatively, we could have chosen, following [Der83a], to consider a periodic medium of period N,
W, =W, .y Solving (310) with P, = P,, one then obtains (after some reshuffiing of ndices)

C N-1 1 W 11 ns
Pper E=0 — N (1 + l—[ Lu) ,
g ( ) Wn+1,n =1 =1 Wn+]+1 n+y (3 14)
C _ (1 lI—VI Wn,n+1)_ .
N n=1 Wn+1 n

In contrast with (3.13), this only nvolves finite sums and no such condition as (3 12) must be
assumed.

3112 A digression on Kramers’ problem Having established the general forms (3 6) and (3 7) of constant-current solutions
for an arbitrary configuration (F(x), D(x)), 1t 1s natural to show how they allow one to deal with a classical problem the thermally
activated escape from a metastable state (Kramers’ problem, for a review see [Han86] and other papers in the same volume)
Consider the potential U(x) of fig 3 1, one asks at which rate I particles mitially located in the first well will jump over the
barrier to reach the second one In the strongly overdamped limut, in which neither the potential nor the force F(x) = —U’(x) vary
appreciably on the length scale (MkT/y”)""* (where M 1s the mass of the particle), the answer can be constructed from (3 6)
Indeed imagme that particles are injected at x = x, and removed at x = x,, thus creating a constant current J The steady state
with boundary conditions P(x = x,) =0 reads

x

P(x) = —Jpeq(x)f 5(%0—) . (3 15)

X2

where p_ (y) = exp[—U(y)/yD(y)] 1s the Boltzmann equilibrum distribution The escape rate 1s then obtamned as the ratio of the
current to the population in the mitial well,

r= J(fb P(x) dx>41 = qb dx p, (x) f W{q()}))ﬂ (3 16)

Xl X
For the configuration of fig 3 1, a steepest descent approximation would lead to

_ Mo, o, e “EWAT

2 _ g,
o , wl=U'W)IM, (317)

which 1s the Arrhemus—Kramers result [Kra40] in the overdamped hmit

u (x)ﬁ\

Umax

J J
— i

L.y

e

Fig 31 Kramers’ problem exit time of a potential well for an overdamped particle A current J 1s mjected at x = x, and retrieved at x = x,



182 J -P Bouchaud and A Georges Anomalous dyffusion in disordered media

More generally, the steady-state distribution (3 7) allows one to compute for an arbitrary potential U(x) the mean exit time
(over thermal histories) of a given mterval /, given an mmtial position x,, inside this interval Indeed, the probabihity of being stll
nside [ after a time ¢ reads

J'P( V.t 0) dv (3 18)

!

Hence the distribution of exit times is

a
Y IP()’~f|Xn~0)d,v (319)

1

Its average value thus involves P(x, x,, E =0) only,

5

T(x,) = f dtfP(_v. f|2,.0) EJP(y. x,, E=0)dy (3 20)

0 i

Guven the situation and boundary conditions of fig 3 1, (3 16) 1s recovered from (3 20). (3 7)

3113 Deducing the asymptotic velocity from the steady state Before gong further, we want to
show that the asymptotic velocity for a general one-dimensional hopping model can be directly obtained
from the steady state P,(E =0)

This can be achieved by two different methods Followmg Derrida [Der83a), one can consider a
given periodic sample W, and, making use of (3 14), obtaim the asymptotic veloaty for a finite period N
Then, taking the limit N— o, the result 1s found to converge with probability one towards a limit
independent of the particular configuration chosen Alternatively [Geo88], one can relate the velocity
to the flux at infimty associated with the average steady state on the whole hne Both methods give the
same result but both have their loopholes In the latter one takes exphcitly averages over disorder and
one would like to prove that sample to sample fluctuations do vamsh in the long-time imit No averages
are taken 1n the former, but one should prove that the limits t— % and N— « do commute (that 1s, that
the result on a periodic lattice of large period does comncide with the result on the open line) In order
to settle these difficulties, one needs information on the approach to the infinite-time limt, which
requires the knowledge of the Green function at non-zero E This will be tackled in the next section,
where 1t will be shown that the asymptotic velocity is indeed a self-averaging quannty, the value of which
comcides with the one deduced from the present steady-state analysis

Let us first follow the second method and take the average over disorder of the open-line steady state
(3 13), for a model in which the paus (W, ,,,. W, ., ,) are independently distributed on each link

n n+lin
Then
x W N —n
(e 5 (). e,
o T T (321)
n i no—n 3
<W—> (P,(E=0)), n<n,

Jt1yg

W

The geometrical series 1 (3.21) converges only provided (W 1 ]> <1, therefore

jJ+1

(PAE=0)) =+, of (W, /W, )=1. (3.222)
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oL
<P,,(E=0)>=<W%><1—<%>) X <v_vi//t>—'"—"u" n<n
it (W, /W, )<l i (3.22b)

[where in the last expression and in the following, obvious notations have been used for W, ., (W_)
and W, (W.)]

The dependence of the average steady state 1s thus very similar to that of the pure system (3 8); quite
intuitively, the velocity 1s deduced from the flux at infinity,

1V = (Ua) hm [(P,(E = 0)) = (P_,(E=0)].

a being the lattice spacing. One thus obtains (see [Tem72] for an early derivation)

]

W,
V=0, it (5= )=1, (3.239)

-1
%:<-V;—_,> (1—<%>) if <%><1 (3 23b)
For a model with site disorder, in which the pairs (W,_, ,, W,,, ) are independent random variables
(e.g the random trap model A), one gets the same expressions (3.23), provided (W_, W_) denote
( —-1.n n+1 n) [AS]89C]

The main outcome of this calculation 1s that asymmetric models can display zero asymptotic velocity
when the “slow” bonds (opposed to the average bias — here towards n > 0) have a large enough weight
or strength This 1s most likely the signal of a phase with anomalous drift, as will be discussed at length
n section 3.3

The advantage of considenng a periodic sample [Der83a] is that at large times a stationary state 1s
established with a non-vamishing probability on each site, related to P%“"(E =0) (corresponding to a
constant non-zero current and periodic boundary conditions) Defining

RO= 3 Prnl®).

one has
PP (E =0)
R (¢ 324
n( ) P VN Pper(E 0) ( )
The velocity 1s then computed as [Der83a]
N
x(t) =a X ngt=a 2 (W= Wo LR, (3.25)

where the master equation (2 1) has been used, together with the perodicity of the medium Making
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use of (3 24) and observing that
N
2 (VVIH*I.M - Wn*l n)Pger(E: 0) = N »
n=1

one gets in the limit 1 —

d — N
VN—}I_)nld_tx(t)—a E’}:l=l Pger(EZO)

(3 26)

One has thus obtained the expression of the asymptotic velocity for a given periodic sample of
arbitrary peniod Taking the imit N— o, one finds that V,, converges with probability one towards the
previously obtaimned result (3.23)

3 1.2. The Green function at E # 0

3121 Recurswve construction Obtaimng the full Green function for E # 0 1s of course a formidable
task, which cannot be achieved in closed form However, a recursive construction can be given
following an ingemous scheme elaborated n [Ber78, G10, Ber85] This scheme makes use of the
auxihary quantities G, (E), G, (E) (n>0) defined by (in the following we set n, =0 for the sake of
simphcity)

G:(E):Jnn+1(E)/Pn(E):Wn W,n+1Pn+1(E)/Pn(E)’

+1n n
(327)

Go(E)=1, (E)IP (EY=W ,  _ -W

n —n —n-1

-n—1-n P—n—l(E)/P~n(E)

Being the ratio of a current to a probability at the “frequency™ E, G (E) [G,, (E)] can be thought of as
an effective admittance [G10] for the part of the chamn to the right of site n (to the left of site —n) The
Laplace transform of the master equation (2.1) can then be rewritten, using these auxiliary varables, as

(n>0)

EP(E)=-G,(E)P(E)+ G, (E)P, (E), (3 28a)
EP\(E)-1=~[G,(E)+ G, (E)]P(E), (3.28b)
EP_(E)=-G,(E)P_(E)+ G, (E)P_, (E), (3 28¢)

which are of first order n space, and as such can be easily iterated to yield

P(E)=[E+ G (E)+ G, (E)]", (3.29a)
_ © G, (E)

PE) = PE) |1 e iy (3 29)

P (E)=PyE) [] ZnilE) (3 29)

m=1 E+ GI:I(E)
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The auxihary variables G, are easily seen to be nfinite continued fractions, recursively defined for a
given sample (W, ) by

Wn+l,n W

Gl=—ln _ Gr=——n 3.30
1+ Wn n+1 1+ W—n,—n*l ( )
E+G,,, E+G,.,

We shall assume throughout this section that condition (3 12) defining the direction of the mean bias
is satisfied and we shall work on the infinite ine Then 1t 1s easily seen that the construction of the
steady state given above 1s recovered for E =0. Indeed, the iteration of the recursion relation for
1/G ] (E) is convergent for E— 0, while the recursion relation for 1/G, (E) diverges in this limit (this 1s
because W, ,../W,,,, 1s typically smaller than 1 because of (3 12), while W W 18
typically larger than 1). More precisely, one notices that for E—0

G,(E)>G,(0), G,(E)~Eg, +-,
where G (0) 1s defined by the same relation as (3.13),
1—1 ‘4/]‘]_*_1

1 1+§11—[

= 331
G:(O) Wn+1 n i=n+1 sz+1,¢ j=n ‘VJH,; ( )
[and thus P,(E =0)=1/G(0) for n>0], while the g, are defined by
8.1+ g, =W,y W, .y, (3.32)

leading back to expression (3.13) for P_ (E =0). The quantities 1/G,(0), g, are random variables,
whose average values are easily computed n the case where the paws (W, ,,, W,, ) are random
independent varnables,

<ﬁ>=(g;)=0, if <%>21, (3.33a)

N TN (RS T B

— — — —

=

with similar expressions for site disorder [Asl89c]

3.1.2.2 The velocity and diffusion constant for a gwen sample: self-averaging property. As first
shown 1 [Asl89a], the above construction of the Green function can be used to study the long-time
behaviour of the thermally averaged position x(t) for a given sample. Its Laplace transform reads

xl(E)sf e Fx()dt=a 2 n[P (E)—P_(E)]. (3.34)

Using eq (3 29), this can be rewritten as
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x(E)=aPy(E)[G,(E)S'(E; §=1)— G, (E)S (E, £=1)], (3 35)

where S™(E; ¢) are finite series defined by

ST(E, §)=1+§ H -IC-;G(E()E) (3 36)

(the parameter ¢ has been introduced for further use). Studymg the long-time behaviour of x(1)
amounts to studying the singularities of these series for E—0. This 1s easy for S (E, &), which
obviously has a fimte limt as E— 0, thus the term mvolvmg S~ contributes to x(¢) only through
corrections of order 1/¢. Analysing the divergence of S *(E, ¢) without taking averages 1s much more
difficult It requires the use of a resummation procedure [Asl89a], which we now briefly sketch
Introducing the centred random variables

Y(E) = G—“Ll(—ﬁ -m(E) with m (E)= <—C%ES> . (3 37)
one writes
G/(E) _ i “ gy
E+G'(E) 1+E[m (E)+7(E)] 1+Em1 ,,2_:0<1+Em1> ‘ (338)

Using this form 1n (3 36) and collecting terms nvolving products of a given number of v, one obtains
the following convenient expansion of S (E, ¢)

cm o 1+Em(E)  Eg & g
S ) = Y Em(B) 1—§+Em1,§1(1+Em)”"
Bt ¢ _ & 2 S (339)

1—§+Em1 ast (14 Em )"

Thus, one sees that the most divergent term of S *(E, £ = 1) for E— 015 1/[Em,(E = 0)] ndependently
of the specific sample considered. One thus gets from (3.35)

1 1
x](E)Nm E'l’ Tt E—)O,

which means that the large-time behaviour of x(¢) reads for a given sample
X)=Vt+ -+, t—>o, V=(1/G(E=0))""

Using (3 33) this provides a nigorous denvation of the result derived from the steady state in the
previous section and shows that the velocity 1s indeed a self-averaging quannty. The non-leading
contributions to the thermal average of the position, x(¢), do, however, display fluctuations from one
environment to the other, which will be studied 1n section 3.1.3
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The same techniques can be used n principle to calculate the diffusion constant for a given sample,
when 1t exists,

_l g N T2
D=3 hm o [x(t) - ()]

Indeed, the Laplace transform x,(E) of the mean square x(t)* can be wnitten mn terms of S (£, E) and
of 1ts derivative as

w(E)=a S w'{P(E) + P_(E)]

2
__a

aS " 08"~

)+G(E)(s (EsD)+277), )] (3 40)

P(B)| GI(E)(s’

where again the dommant contnbutions up to order 1/ E? come only from the term mvolving §*
However, obtaining these contributions in explicit form for a given sample 1s fairly tedious; further-
more, the second term x(¢)° in D requires the computation of the convolution x, * x, of the Laplace
transforms For these reasons, this direct calculation has not yet been performed 1n the literature for the
general case Instead, the following results have been published:

—In [Der83a, Asl89b], the diffusion constant of a given periodic sample has been obtained through
steady-state methods generalizing the calculation of the velocity presented above

—-1In [A5189a] the calculation of the behaviour at large time of the average over disorder (x (1)) —
{(x(¢)*) for an infinite sample has been performed, starting from eq. (3.40). The resulting expression of
the diffusion constant comncides with the one of the periodic case in the limit of an infimte period It 1s
found to be finite (and non-zero) provided

(W_IW_)*) <1,
i which case 1t reads

it (N Ao () ow

— —

D= for (W_/W_)<1<{(W_/W.,)*) The calculation of D 1n the last regime, (W_/W_)>1, 1s
more complicated, because the velocity vanishes simultaneously, this will be clarified in a particular case
in section 3 3

Because the direct calculation for a given infinite sample has not been performed 1n the general case,
the self-averaging (i.e. sample independent) nature of D remains to be proven (though 1t 1s most likely
to hold). It has been shown in [Asl89a] that it holds true in the limiting case of a strictly directed walk
(in which the W, are all zero)

A remark on the Green function at comnciding pownts. It 1s to be noticed that for a general hopping
model, the velocity and diffusion constant can mn fact be computed from the knowledge of the
expansion at small E of the average Green function at comciding points [Geo88, Asl89b],

(P(x,x; E))y=1/V-2DIV)E+---. (3.42)
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3.13 Transients and sample to sample fluctuations

As 1s clear from (3 35) and (3.36), the thermal average of the position, x(f), 1s a sum of (correlated)
random variables, and has thus a distribution over environments Because the system 1s one dimension-
al, the relative standard deviation of this distribution only decays as 1/¢''% thus leading to sample to
sample fluctuations resulting in D, # D n general [Dou89a, Asl89d]

The above techniques can be used to obtain information on this distribution (and thus also on the
transient regimes) Let us first consider 1ts mean (x(z)) It was first shown in [Asl89a] that one can use
(3 35) and (3 37) to compute the first correction to (x(f)), which turns out to be a constant,

<m> =V(t+1,)+ (3 43)

In order to obtain the expression of ¢, one has to calculate correlations between the vy, at £ =0,
together with the subdominant contributions to G (E) close to E = 0. The former are easily calculated
from (3.37),

(7,(E=0)y,(E=0)) = (1/GJ (0 (W_/w_)l!

with (a=1)
©, if (W_IW_)?)y=1,

WO () () 2 v O

Expanding the recursion relation (3 30), one observes that for small E,

G,(E)~G,(0)+Eg, +

where the g, are given by

g+ 1 = 1 - VV] )+l
R 345
s ot 2w L B
This quantity has a finite average provided (W, /W ., ) <1, given by
+
& > < 1 > (W_IW_) 346
<G,j(0)2 G0/ 1—(W_IW_) (3 46)
The constant correction to the average {x(z)) 1s then calculated to be [Asi89a] (a =1)
1+(W_IW,) ( 2< 1 > )
= < = - 47
VtU 1 _ <WH/W_,> V G+(O)2 1 » (3 )

provided (W, /W ., )*) <1. It diverges when ((W, ] ,+1/ W]+ 1 ,)?) reaches 1; thus, if the distribution

of the W, 1s such that (W, /W, ) <1<((W,_ ., /W, ,)?), a finite velocity will be reached for a
given sample but the sample-averaged correction to this behaviour diverges. f, must be interpreted as
the time scale after which the regime x(¢) = Vt 1s reached on average !
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The same techniques can be used to study the variance of the distribution of x(r) over samples. As
announced above, one finds that 1t 1s of order  and can be expressed in terms of V and the time scale ¢,

(x(0)) = (x(0) = Vot + - - (3.48)

From this result, one concludes that the diffusion constant D, , defined in section 2 1 and associated
with the average diffusion front ( P(x, 1)), does not coincide with D whenever the velocity 1s non-zero,
and reads [Asl89d, Dou89a] (a=1)

1+(W_I/W.)
1-(W_IW.)

~ 11+ (W /W)
+2Vt0>—2D 3 W) (3.49)

D,,=D+V2= g (
Since the variance of x(1) 1s of order ¢ as soon as V #0, 1t 1s clear that the distribution (over thermal
histories) of the scaled variable (x(¢) — Vt)/t''? cannot satisfy a “generalised” CLT (1.e. reach a hmt
form) for a given environment The basic mechanism underlying these sample to sample fluctuations can
be most simply 1illustrated on the following example [Dou89a]. Consider a sequence of random vanables
(¢, ty, . . .), which are mdependent but distributed according to different distributions p, (¢), p,(1), etc.
One asks whether the CLT can be generalized to the sum

T, =2t (3.50)
1=1

This 1s the generic situation one encounters in a disordered medium. T, describes, for example, the first
passage time at site n of a random walker with W,,,, =0 and W, , , = W, (directed walk), p,(f) being
the waiting time distribution, p,(f) = W, exp(~W,t) Denoting by 7, and o, the mean and vanance of
p,(t), one has

n
T,,=2 T,
=1

§N|

~T*=> 0. (3 51a,b)
=1

The proof of the CLT (in 1ts usual Gaussian form) given 1n section 1.1 can be readily extended (cf. € g ,
ref. [G2]) to such an mmhomogeneous situation when one considers the rescaled varable

(7, —T)/(Z1 a,)m, (3.52)

provided that the series (3 51b) diverges. Let us assume furthermore that the series (1/N) I, 7,
converges (as would be the case for the above walk when (1/W_ ) <o); 1t 1s easily seen that no CLT
holds if one rescales T, as T, —nlim, . N 'LY 7 mstead of T,—T,. The basic mechanism
encountered in this section is indeed that one cannot forget the fluctuations of x(¢) by replacing 1t by 1ts
leading term, ¥Vt However, this suggests that for the above hopping models, the distribution of the

variable [x(¢) — x(¢)]/t'"> — when diffusion 1s normal — could have a mit form for a given environment

32 Analytcal results for one-dimensional symmetric barriers

The above Green function techmques, and 1n particular the recursive construction of section 3 1 2, were first applied (see ref
[G10] for a review) to the case of random symmetnic barners W, .., =W, ., . (=W,), independently distributed according to

n
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$(W) In section 2 4 2 we have performed a qualitative analysis of such models, based on their electrical analogue and on general
statistical mechamisms Analyucal results and techniques will be briefly summarized 1n this section, referring for further detauls to
the review article of Alexander et al [G10]

The starting pomt 1s the recursive refation (3 30), which, i the symmetric case, becomes

L1,
G' W, E+G.

n n+1

(3 53)

(with a simlar relation for G,/) The G, are random (correlated) variables depending on the sample (W,) Their distribution
Q:(G) satisfies an ntegral equation which follows from the above recursion relation,

Q:(6) :de ‘/’(W)fdG' QE<G')5[G - (% + ﬂ%) ]

(3 54)

[ ol S et )

G-F

(The use of such an integral equation, mitiated by the works of Dyson [Dys53] and Schmudt [Sch57] (see also [Lie66]) on random
harmonic chans, 1s a powerful tool to study one-dimensional systems ) Because the G, are correlated, the distribution Q (G)
does not contain all the desired information on the diffusion behaviour, however, 1t allows one, for example, to compute the
?Veragcz3ove;]dlsorder of the probability of presence at the imtial site (autocorrelation function), whose Laplace transform reads
usmg (3 29

- , 2e(G)O G
<Po(E)>—JdedG ETGiC (3 55)

Detailed studies of the solution of the mtegral equation (3 54) have been performed, n both hmits E— +oo (short times) and
E—0 (large times) (see ref [G10]) Note that, for the pure system y(W)=8(W - W,), Q(G) 1s a delta function (G- G,)
with

2G,=VE’+4W,E-E (3 56)

In the it of infinite E, one immediately sees from (3 54) that Q.(G) = ¢(G) Provided the successive moments {W* ) of W,
exist, a systematic expansion of Q .(G) i powers of 1/E can be performed [G10] Ths can also be done for the mtegral equation
satisfied by the full average Green function { P,(E)), yielding a short-time expansion of the diffusion law (a2 = 1),

() =2 Wt =2(W?) = (W)J6 +32(W) = W) (W) +(W)*)' + (357)

However, the relevant information on the large-nime behaviour 1s contamed in the small-E regime, where (3 54) 1s much more
difficult to analyse For E =0, 1t 1s clear that Q,(G) = 8(G) satisfies (3 54) Since m the mfinite-time limt a generalized central
limit theorem 15 expected to apply [e g to P,(¢)], one can suspect that Q .(G) will depend only on a scaled vanable G/s(E) (1n a
limit m which G and E are both small) Solutions of (3 54) have thus been looked for under the form

04(G) = % h(GI#(E)) (358)

The scaling factor ¢(E) and scaling function A(x) were found to have a qualitatively different behaviour according to whether the

first moment (1/W, ) 1s fimte or not [Ber80]
(1) 1f (1/W,) 1s fimte, the problem 1s found to be very sumilar to the non-disordered case, with an effective hopping rate

W, = (1/W,}"", ndeed, one finds that
eE)y=VEQ/W)'"",  h(x)=8(x—1) (359)

This leads to the famihiar large-time decay of the density on the nitial site,

P 2. V7me (360)

(Recalt that i this case diffusion 1s normal with a diffusion constant D = (1/W,)™")
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(n) If, on the contrary, {(1/W, ) ==, for example, if
PW)~W* 0<p<l, W—0,

then h(x) 1s found [Ber80] to be a non-trivial function continuously depending on w and very different from the result for the pure
system h(x) satisfies the following integral equation

o«

h(x)=X“fdy h(y)(y{x)“ (3 61)

3

(whose solution can be expressed m terms of a generalized hypergeometric function [Ber80]) The scaling factor (E) reads
g(E)ec EV'0H) (362)
leading to an anomalous decay at large time of ( P,(t)),
(Py)y~Ct ™0™ | psw (363)

In section 2 4 2 1 diffusion was shown to be anomalous 1n this case, with a diffusion exponent v = u/(1+ u), which precisely
corresponds to (3 63) 1f one takes the scaling form {2 7) of P (t) mto account Note that, i this unbiased situation, a CLT 1s
expected to hold for P,(¢) for a gwen environment, however, the scaling function f(x) assoctated with P,(¢) 15 not known

analytically for this problem, as opposed to h(x), a purely exponential form f(x) = ¢~ " has been advocated on a numerical basts
[Ber80]

3.3. Anomalous diffusion behaviour of the asymmetric hopping models with bond disorder

The general analysis of section 3.1 reveals that asymmetric hopping models with bond disorder can
display anomalous diffusion behaviour without assuming a prion broad distributions of hopping rates
This is at variance with the symmetric case studied in the previous section and with the random traps
models of section 2 4. The aim of this section is to discuss this anomalous behaviour through (i) a
physical explanation of the underlying statistical mechanism and (ii) some analytical results. In so
doing, the continuous-space formulation of the random force model (section 2 1 4, 2.3) is most helpful,
since it retans the essential features of all asymmetric hopping models while allowing the exact
calculation of some quantities [Bou87a, 89a]. Section 3 3 1 1s devoted to a presentation of this model.

3.3.1. The continuous random-force model
33.1.1 The model. The contnuous random-force model 1s defined through*’

n+l,n = 2 ’

ya

n,n+1 = 2 9
a

W T o aF/2T W T o FaF/2T

with F Gaussian distributed ({(F) = F,, (F,F,,).=(¢/a)é,,,). The continuous lmit (a—0) of the
associated master equation corresponds to the following Langevin equation:

y dx/dt = F(x) + n(t) , (3 64)

where F(x) 1s Gaussian white noise (in space) and 7(¢) Gaussian white noise (in time) (see section 2 3)
Equation (3.64) is thus the simplest Langevin equation describing the motion of a particle in a random
medium one can think of. As we are in one dimension, F(x) can be written as F(x) = —dU/dx; U(x) 1s

*)In the following, we set the Boltzmann constant equal to umty (k=1)
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A
U(x)

Vox

-F,X

Fig 32 Typical configuration of the potential of which the random force F(x) 1s the derivative The fluctuations of U(x) around the average slope
—Fyx typically grow as Vox

thus a “‘Brownian motion” in x, a typical configuration of which 1s depicted in fig 3 2. One immediately
sees that the motion of the particle under the external bias 1s strongly impeded by the fluctuations of the
potential

3.3.12 Velocity and diffusion constant The results of section 3 1 allow one to calculate the
asymptotic velocity and diffusion constant for model (3 64). This shows at once that non-trivial
properties appear for some values of the parameters defiming the problem. For a Gaussian F, one has
(in the following we shall take F, > 0)

((Wpar/ Wy ) ) = (o7 @ D) = g er2TDb) (3.65)
where u 1s a dimensionless parameter,
p=2FKTlo (3 66)

w18 thus the ratio of the mean energy gain (over a lattice site) Fya times the thermal energy to the mean
square of the energy fluctuation oa (again over a lattice site). Applying eqs (3 23) and (3 41) to this
particular case, one finds

* 0<u<l1: (W_/W_)=1, and hence V=0,

# 1<pu <2 (W_/W.)<1<{(W_/W.)*) The velocity 1s now finite and reads

V=V,(1-1/n) (3.67)
(Fy/y=V, 1s the velocty the particle would acquire mn the absence of disorder.) The diffusion

coefficient, 1n this phase, 1s infinite
* w>2or {((W_/W_)*)<1. V and D are both finite; V retamns the same expression as above and D
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reads

D=Dy(u-1)/(n-2), (3 68)

where T/vy 1s the “bare” diffusion constant D,. The width D, of the average front can also be obtained
from (3.49) and reads

D,,=Dyul(pn—-12).

Note that in the limit of an ordered system (o —0, p— ), one recovers D =D, = D,.

These results are summarized in fig 3 3, where V/V, and D/D,, are plotted versus u One should note
that these two quantities are singular for different values of the control parameter, this is often
encountered n the physics of disordered systems (see, e.g., [Der84a]).

The only parameter controlling the transport properties is thus the dimensionless parameter u, which
1s independent of the lattice spacing a and of the friction coefficient y. u increases as the mean bias or
the temperature grows, and decreases 1If the disorder gets stronger

The appearance of a phase where the velocity vanishes simply means that the relation between
position and time 1s sublinear [Der82b, Sol75, Kes75], (x) ~t* with a« <1. The divergence of the
diffusion constant signals the fact that the spreading of the probability distribution grows faster than t''?
x—x~1")

The aim of the next sections 1s to show how these laws can be understood on physical grounds
[Bou87c, 89a, Vin86, Fei88] and the diffusion exponents calculated.

For a general asymmetric model, these two anomalous diffusion phases read (section 3 1)

(W_IW_Y=1, (W_IW_)<1={(W_IW_)),

which are easily shown to yield 0<u <1 and 1< pu <2 i the continuous hmit (3.64).

Fig 33 Veloaity and diffusion constant (divided by their “pure” values) as a function of the dimensionless ratio . The dash—dotted line shows the
behaviour of the current gomg through a fimte-size sample



194 J -P Bouchaud and A Georges, Anomalous diffusion in disordered media

3313. Length and time scales The problem at hand 1s thus the thermally activated motion of a
particle within a potential, schematically depicted in fig 32 One 1s led at once to single out two length
scales, defined by comparing the fluctuational energy vx (a) to the mean energy gam due to the
external force, —Fyx, or (b) to the thermal energy T Then for x <x, = o/F;, the particle’s motion 1s
mainly determined by the energy fluctuations and msensitive to the presence of the mean bias F, The
thermal energy T allows the particle to diffuse without being too much affected by those fluctuations
untl vox~2T (or x~x, =4T%"); this distance 1s reached after a time corresponding to free
diffusion,

7, =x112D, =y 8T’lo"

Now, two very different physical situations occur when x,> x, or when x, > x, The former case
indicates that, well before being able to feel the external force, the particle 1s “pinned” by strong
fluctuations at scales x; and must then wait for a large energy fluctuation AE > T from the thermal bath
to overcome the potential barrier and continue on its way

On the other hand, if x, > x,, thermal energy 1s able to bring the particle far enough so that the
mean bias F, exceeds the force fluctuations; the subsequent motion is then only slowed down by rare,
very large, force fluctuations occurring on a scale x,. The relevant control parameter thus naturally
appears as

x,/x,= (4T o) Filo=u’

[see eq. (3 66)] or equivalently, as the ratio of the energy barrier associated with the scale x, to the
thermal energy,

AU(x,) /12T = a/2TF, = 1/p .

As 1s clear from formulae (3.67) and (3.68), 1 =1 does not merely correspond to a cross-over region
but to a true phase transition separating a region of zero velocity (u <1) from a region of finite
velocity

This physical analysis suggests that the motion of the particle can be seen at large scales as a
succession of trappings within regions of size x, (fig. 3.2), characterized by a release time distribution
corresponding to the different times needed for the particle to receive the right amount of thermal
energy. As will be reviewed below, this analogy can be made more precise the distributions of
relaxation times and of the thermal average of the waiting time can be obtained in closed form for this
model [Bou87a, 89a] and indeed turn out to be broad.

332 Swar’s diffusion for zero global bias

3321 Ultra-slow diffusion When the external bias vamshes (F,=0, or more generally when
(In(W_/W )) = 0), the previously defined length scale x, diverges and the particle can only rely on the
thermal bath to progress and overcome ever increasing potential barriers: n order to span a distance x,
the particle must be given an energy typically of the order of vox; this takes a time governed by an
Arrhenius law,

t=1 exp(vox/2T) (3 69)
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(7, 1s obviously the order of magmtude of the “trial” frequency) This suggests
x@®)=0. (x*(n) = Cxi[in(/r)]" (3 70)

This remarkable slowing down of the diffusion process has been discovered by Sinai [Sin81, 82], who
gave a rigorous proof of the above law for a discrete time version of the hopping models considered
here

While the typical time needed to reach x increases as (3 70), one may, however, ask what the
average (over different starting points) of this time 1s. As first discussed by de Gennes [dGe75] and
recently shown by Noskowitz and Goldhirsch [Nos88] (see also [Dou89b]), this 1s obtained as

(t(x)) = <exp(—% f F(z) dz)> =TT (371)

which 1s much greater than the typical time. (As will be discussed 1n chapter 4, long-range correlations
(F(x)F(y)) ~|x — y| ™ with a <2 lead to a modified Sinas law x*(¢) ~ (In £)*'*~* [Bou87b, Hav88b] )

3.3.2.2. Diffusion front and the Golosov phenomenon More precise results about Sinar’s diffusion
have been obtamed recently by Golosov [Gol84] Here again the point 1s that the thermal average X,
fluctuates from sample to sample (while, since no global bias 1s present, (x,) =0). In the case at hand,
these fluctuations turn out to be of the same order as (x>)''> For a fixed configuration of the potential,
the mean position of a packet of particles initially at x = 0 evolves as

x(1) = € (w)(In 1), (372)

where £ () 1s noise of order 1. The width of the packet, however, quite surpnisingly does not grow with
fime* one has

() -x()=x}, tow. (373)

Two mitially close particles, undergoing different thermal histores, stay close to each other for all
times, this means that, at any given time, one deep valley (at a distance In’t from the origin) dominates
all others and gathers all the particles (see fig. 3 4a) It 1s thus clear that P(x, t) does not evolve towards
a limut distribution for large ¢, and remains concentrated around its centre of gravity

For disorder-averaged quantities, one has

x®)=0, {(x¥1)~In* (3 74)

An mtriguing remark [Dou87] must be made concerning the full averaged hmit distribution of the
scaled variable x/In’: as the potential U(x) 1s a “‘random walk” as a function of x, the probability that
U(x) remarns confined between —U/2 and +U/2 1 the segment [0, x] 1s a well-known quantity [G1],
which reads

% 5 1) @k+1)’a’ x>. (3.75)

&2k +1 eXP(_ 2
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Fig 34 (a) The Golosov phenomenon 1n a given environment, the probabulity distribution 1s peaked, 1ts centre of mass 1s at a distance & In’t from
the ongin, while 1ts width 1s finite, ~x, = (k7)%o (b) Scaling function for the average diffusion front m Smar’s (F, = 0) case

Now, the highest potential barrier being of the order U, the associated time 1s £ ~ exp(U/2T) and one
can think of replacing U by 27T In ¢ in the above formula to get (P(x, t)) for large ¢ Remarkably this
leads essentially to the exact result for { P(x, t)), which takes the scaled form

x,(P(x, z))-»lnz(t/fl)fo[m] , (376)
fl =5 3 20 el ks )l @)

This exact expression for f, (see fig. 3 4b) has recently been derived by Kesten [Kes86] for a related
discrete time model, and 1s 1n very good agreement with the numerical results of [Nau85] (see, however,
[Bun88]). It has also been partially recovered in [Bou89a] using the replica trick and a WKB method

One can also wonder whether the histogram of the positions of a single walker for a single thermal
history and a given environment reaches a limiting form when x(f) 1s rescaled by (Int)* While
ergodicity would suggest that 1t comncides with ( P(x, f)), this property has, to our knowledge, not been
proven

333 Non-zero bus nduced broad distribution of trapping times

As suggested by the analysis of charactenistic scales of section 3 3 1 3, trapping regions are induced
at large scales in the models considered here We show in this section that the corresponding trapping
time distribution 1s “‘broad”, 1 e , has a slow power law decay, which 1s 1dentified precisely

33 3.1 Physical ongin rare events The appearance of a broad trapping time distribution has a very
general origin 1n thermally activated systems 1t comes from the fact that exponentially rare energy



J -P Bouchaud and A Georges, Anomalous diffusion in disordered media 197

barriers take an exponentially long time to be crossed. If p(AU) ~ exp(—AU/2T,) and 7 < exp(AU/2T),
one has

p(7)dr = p(AU) dAU — p(7) ~ 7 "7 (3.78)

The origin of the (Poisson) exponential distribution of energy barriers can be understood on the binary
model for which the local force 1s equal to F, with probability 1 — p and —F, with probabulity p <1

The probability of encountering a sequence of ‘“unfavourable” dnfts of length Na 1s obviously
P(N)=p" The corresponding barrier height 1s AU = NaF,, and hence

AUY=e *Y"?"0 with 2T, =aF,/In p . 3.79)
14 0 0

Let us first describe a heurstic way of obtaining the large-time behaviour [Fei88] of the corresponding
distribution for the continuous model (3 64), which 1s easily generalizable to, e.g , correlated random
local forces. Define p, (AU) as the probability that the potential energy 1s equal to U =0 for x =0 and
U=AUforx=1,

L

pL(AU)mJQFS(! F(x) dx+AU) exp( ! [F(x)2(TF°] )
j@F r— ex Ude(lkAU +1kF(x) — [F(x) FO] )] , (3.80)
which yields, for L large enough,
pLAU)xe 87 Lo, (3 81)

and hence, using 7 ~exp(AU/2T), p(7) ~ 7~ ) for r— o with u given by (3.66)

The saddle pomt of integral (3.80) is at F(x)=AU/L, which shows that indeed AU can be
interpreted as the highest energy barrier between 0 and L. Note also that the case of a Gaussian
correlated force [{ F(x)F(y)). = G(x — y)] can be easily treated with this method and leads to the same
probability distribution for trapping times upon the replacement

(r—>f G(x)dx. (3.82)

If the correlations are long ranged [1.e., G(x) ~x~“ with a < 1] then p L(AU ) will never cease to depend
on L, and one should work with an “effective parameter” u(L) going to zero for large L as L~

The above argument shows that indeed a broad distribution of trapping times appears in the random
force model. This 1s a generic feature of asymmetric hopping models, the exponent governing the decay
of this trapping time distribution being in general given by the equation [Der82b, 83a, Kes75]

(W_IW_)*) =1 (3 83)
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(a justification of which will be given below) The solution of this equation for the contuous model
considered here indeed comncides with 2F,T/o
Moreover, one may for this model calculate exactly the distribution of two particularly interesting

quantities [Bou87a, 89aj-
— the distribution over environments of the thermal average of the local “‘sojourn time”, denoted as 7;
—the density of (inverse) relaxation time [Bou87a] defined through

(P(xy, t|x,,0)) = j drp(r)e "

0

These quantities will be calculated mn the next section and 1n section 3.5, respectively Both indeed show
the expected algebraic tail for large time

3332 Exact calculation of the distnbution of the mean local trapping ime Let us 1solate a region I of size x, and put a
particle at £ =0 on site x, taken as the “entry pomnt” of the trap, / =[x, x + x,] The probability that the particle is still inside 7
after tume ¢ 1s obviously (cf section 311 2)

(0= [ dy Py 1x.0) (384

The probability of leaving I between ¢ and ¢ + dt 18 simply
—(a/at)p,(¢) dt (3 85)

Note that 1t 1s very small for t <7, The mean exit time [mean is here over different particles or thermal histories, but for a given
configuration of F(x)] 1s then

x

f(x):«Jdn%sjdvp(y,x,hm (3 86)

0

Taking /=[x, x +dx], one may thus define the local “sojourn time” 7(x) to be proportional to P(x, x, E=0) For physical
reasons the proportionality constant 1s chosen to be x|
From (3 7). 1t 1s easy to see that 7(x) satisfies the following equation

dr Fxy , ., .
e = _2 + —~ 7 N = ) =—, 3 87
i 2 F T, 7 - i 5 (3 87)

which 1s a “Langevin equation” for 7 to which one naturally associates a Fokker-Planck equation*’ for the probability ¢(7, £),

o L. e (.9, . )
- =2 — 7= - 3
V=22 (T a2 A (L i)y (3 88)
The normalizable stationary distribution (7, £ = —) reads

1 i

= — 38
WA= [ e (3.89)
which exhibits the expected power law decay for large 7 The moments of 7 then read
- I'(p —n) —
Y=l —r, n<u, T)y=+x, n> 390
(") =1, () p.oo AT 1 (3 90)

Note that this expression can also be directly computed from (3 7), using the fact that F(x) 1s Gaussian distributed

*! Note that the correct prescription to be used (Stratonovich's) 1s fixed by working on a latuce
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Fig 35 Detail of a trapping region and typical succession of trials leading to escape, which generate the “Kesten” varable z, + z,z, +

Remarks
(a) Expression (3 7) for 7(x) has a simple physical interpretation if one writes

_ Ux)-Ulx+a Ux)-U(x +2a
T(x)=r,[1+exp<—iﬁu)+exp(ﬁ—x—](,—))+ ] (39
which expresses the fact that —in a region of large fluctuations — the particle will first make a hop to x + a but then will roll
downward until 1t has sufficient thermal energy to reach x + 2a, etc , until 1t finally reaches a crest beyond which the mean bias
takes over (see fig 3 5) The typical time needed to exit the trap 1s the sum of the times corresponding to the intermediate steps
7(x) 15 thus of the form 7=z, + 2,2, + z,2,2,+ , with z,xe”***T Such random vanables have been extensively studied in
[Kes73, dCa85, Der83d], for large 7, one can show that the resulting distribution of 7 decays as 7 **’ with u defined by the
equation {z*) =1, which provides a justification of (3 83) [Indeed, ¢ satisfies the following ntegral equation

¥(1)= j dr’ l/J(T_")JdZ p(2)8{r—z(1+ 7)) = J dz p(z_z) W(7/z - 1)
Assuming an algebraic y(7) for large 7 immediately leads to (z*) = 1] The case studied here (In z Gaussian) 1s remarkable smce
it leads to an explicit solution (in the limit a—0) of the above integral equation, (while the general case 1s quite complex
[dCa85])

(b) An mteresting 1ssue of the above analysis 1s a more quantitative description of the transient regimes, already discussed on
physical grounds 1n section 3 3 13 This amounts to studying how the distnibution ¢(7, £) approaches 1ts large-scale it ¢(7),
and requires the computation of the spectrum of eigenvalues of the Fokker—Planck operator (3 88) This has been done 1n
[Bou89a] and the result of this study 1s that for u <1 the spectrum of (3 88) only has a continuous part, and that

('F(O)F(x)) ~ Y2 e—,ﬂx/zn

As foreseen mn sections 3311 and 3313, 1t 1s thus the charactenstic length x, = x,/u’ which governs the approach to the

asymptotic regime 1n this phase The corresponding time to reach this scale 1s ndeed 7, e, since for x < x, the diffusion follows
x*~x,(In t)* For u >2, the correlation function of the 7’s 1s easily obtamned from (3 7) and (3 86) The result has n fact already
been stated n (3 44) and reads, when speciahzed to the model at hand,

=2(p—1)x/x;

(FO)70) = (FO)(70) = 5t ©

Thus 1t 1s seen that the effective traps are correlated, with a correlation length x,/2(u — 1)
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For a more general asymmetric model, these conclusions are qualitatively unchanged, with W,
variable exp(—aF,/T) on each link

1/ W, playing the role of the
3.34 Phase diagram and asymptotic probabuity distribution for non-zero buas

The previous section justifies the 1dea that, when F, #0, the physics of the random force model 1s
well captured, m the long-time hmit, by a directed walk among traps with a broad release time
distribution [Bou87c, Geo88, Bou89a] This simpler model can be solved exactly [Dou87] (section
3.341) This equivalence can only be approximate since 1t neglects correlations between trapping times
(no steps backward), and 1ts status will be discussed 1n section 3 3.4.2 It leads, however, to the correct
diffusion behaviour and average hmit distributions of the position, the form of which 1s independent of
the details of the correlations at short distance Such an 1dea was also expressed 1n [Ber86] on the basts
of a decimation approach

334.1. The directed walk with a broad (W) Let us consider the directed walk on a lattice of
spacing ¢, described by the master equation
dP,/dt=WpP _ —-W P . (392)

where the W, are independently distributed according to a broad distribution (W) which, for small W,
behaves as

Y(W)~ ATk wH™! (3 93)

The waiting time distribution on each site 1s simply W, exp(—W,¢), and its mean, equal to 7, = 1/W,,
has a broad distribution behaving as 7' **) for large 7,. The thermal average of the first passage time
at site x thus reads

x/€

1(x) = Z w! (3 94)

When the W, ! are broadly distributed, the results of chapter 1 (section 1 2) thus allow one to guess the
diffusion behaviour
—1If p <1, the sum #(x) grows as x"’
slowly than ¢ (“creep phase”)
—1If 1< pu <2, the sum #(x) grows as x but the fluctuations are of the order of x'"*, thus the position wll
be typically of order Vi = ¢'™* (“anomalous dispersion”).
—If u>2, the fluctuations recover a “normal” character and x 1s typically of order Vt + VD¢, with V
and D finite

The interest of the directed walk 1s that much more precise statements can be made, 1n particular
about the diffusion fronts. Indeed, the general formula (3.29) boils down, 1n the directed case, to

¥, and hence the position will behave typically as t*, 1.e., more

¢P(x=ng )= — ] (3 95)

Hence, the asymptotic form of the average diffusion front 1s obtamned as the inverse Laplace transform
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of

<E i W>< E Yrvw>nn3xe"p<” l“< E YW>> '

For the three cases above, this leads to the following results
(1) 0<u <1 The small-E expansion of (W/(E + W)) reads
(WI(E+W))=1- A(Er,)"m/sm 7y .

Thus the Laplace transform of { P(x, t)) behaves as

ko

C I —
exp(— cos(mu/2) né(Er,) ) , =4 2sin(wu/2)’ (3.96)

which shows that, in the scaling region, the average diffusion front can be expressed in terms of a Levy
law of order u, characterized by the two parameters 8 = +1 and C (given above),

e~ () R(EE). 0=t w6y (3.97)

The shape of the diffusion front (3.97) 1s depicted 1n fig. 3.6. The scaling function f, (u) is concentrated

O<p<!
.
_——
<u<2
-#
» | ;X
1t — LT | i
n X
-—m—-
pn>2
. |
i N | No net’
ST ) s —e
Vit X

Fig 36 Scaling functions for the average diffusion front m the three cases 0 <p <1, 1< p <2, and 2 < u, plotted versus the associated rescaled
variable The three curves 1n the top figure correspond to 0< p <1/2, u =1/2 and 1/2 < p <1, respectively
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on [0, +oo[ as a result of the bias One can compute the large-time behaviour of the average (x()) m
this directed model (making use of appendix B).

<x_(5>:g(£{(—§;’,%%)(i§) (3 98)

Remarks
+ Equation (3 97) 1s a prior1 only correct 1n the scaling region (x — %, t—x, x/t* finite). However, the
value of (P(x =0, r)) obtamed from (3 97) reads AI'(u)(t/7,) “, which coincides with the exact result
deduced from (3 93),

ECPO.) = | W(W)e ™ aW~ ALz, )" (399)
0
* For a fixed environment, 1t 1s clear that*’
x(1) = £(0)t* (3 100)
where ¢ (w) 1s a random function of the environment (with a variance of order one). Thus x(¢) 1s not
asymptotically a sample independent quantity, and the diffusion front P(x, t) cannot obey a generalized

CLT when expressed 1n the scaled variable x/t* (whether a CLT holds when rescaled as a function of
x/x 18 an open question). Analogously, one expects

() = x(0) ~ £, (3 101)
(1) 1<pu <2 The expansion of (W/(E + W)) now reads
™ H
— _— + e
I1-(1/W)E+ A e (Et,) ,
leading to the limiting form of the diffusion front

B x—-Wt
(P )= 1o 1 (-B )

§1/,u
V=¢(1/W)™', B=2—y U (3 102)

Te
where L, 1s a Levy law of zero mean, characterized by

k13

=+l C= A GntaniD)

Its shape 1s drawn 1n fig 3.6, the dispersion with respect to the mean position 1s anomalous 1n this phase
(as foreseen above) and sample dependent: x*(t) — x(1)* ~ &£ (only the leading term V¢ 1n the thermal
average x(¢) 1s sample independent). This anomalous dispersion reflects the trapping of a fraction of
walkers in very deep local traps Note, however (see fig. 3.6 and appendix B), that in this phase

*)The probability distribution of £(w) 1 eq (3 100) has recently been characterized through its moments, see {Asl90a]
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(P(x, 1)) has a tail decaying as x * for large x. This allows one to show that {(x*(t) — x(t)’) ~£™*, m
accordance with a recent result of [Asl90b]. Hence the average and the typical position fluctuations
behave differently in this phase.

(1) w>2. (W) and (W ™?) being finite, the expansion of {W/(E + W)) 1s simply
1-(UWYE+E*{(1/W*) +---,
and thus (P(x, t)) recovers a Gaussian lmiting form,
(P(x,t))— (4wD, t)"""* exp[—(x - V{)/4D_ 1], (3.103a)

where V has the same expression as above and D,, reads, for this directed model,

- (4} (40

Thus when u > 2, the first two cumulants of the position have a normal behaviour as a function of
time. One should, however, keep in mind that the nth cumulant of the position remains anomalous as
long as u <n (since (W™") diverges). In other words, the hmiting form (3 103a) of ( P(x, t)) only
holds in a “scaling region” 1n which x — V is of the order of (D, t)"'*; outside this region { P(x, 1)}
has algebraic tails, which are responsible for the anomalous behaviour of the higher-order cumulants.

Remarks
(i) The physical meaning of the vamishing of the velocity for u <1 is that the current J, through the
sample goes to zero with increasing sample size,

-1/
J~L ", Low

while 1t goes to a constant for u >1
(ii) It is important to notice that the distribution of first passage times 1s itself a broad distribution,
decreasing as t~"*) (for large ¢).

3.3.4.2. Results and conjectures for the random-force model. As 1s made clear by the arguments and
calculations of section 3.3 3, the directed walk model with a broad distribution of hopping rates (W)
does retain the essential features of the continuous random-force model, and more generally of all
asymmetric one-dimensional models with bond disorder [Bou89a] [the exponent u being given in
general by condition (3.83)]. In particular, one expects the same diffusion behaviour and the same
analytic expressions (3.97), (3.102) and (3.103) for the asymptotic form of the average diffusion front
(P(x,t)). This has been proven rigorously i [Kes75] (although the proof concerns a discrete time
model). However, the constant parameters entering these expressions (namely C, &, 7, in the phase
w<1l;C, B, Vior 1<pu<2;and V, D,, for u >2) obviously depend on the specific model considered
(and were not predicted in [Kes75]). The general expressions of V and D, (and of the diffusion
constant D) have been established above (section 3.1), but no such general expressions exist for the
anomalous phases u <2 One should in fact note that once the umts of space and time have been
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chosen, only the single unknown parameter C 1s required to characterize fully the average front for
w<2

In the following, we review some conjectures that have been made [Bou89a] on the value of this
parameter for the continuous random-force model (3 64). The 1dea 1s to msist on using the directed
walk effective picture of the diffusion process at large scales 1n a quantitative manner Namely, one asks
whether 1t 1s possible to find a lattice spacing &, and a value of A such that the directed model of section
3.3.4.1 reproduces quantitatively most of the diffusion properties of the random-force model (the time
constant 7, can be chosen to be equal to the natural time scale 7, without loss of generality) Furst, start
from the directed model with a very small lattice spacing a— 0, with the choice

(W) =ap,(W). (3 104)

where p,(E) 1s the average density of relaxation times of the random force model discretized on the
same lattice (the continuous limit a— 0 of p, will be obtained n closed form n sectton 3.5). Then, by
construction, { P(0, ¢)) concides for both models for all ¢, since

x

{ P(0, t)>d,,=f Y(W)e M dw= af p,(W)e ™™ dW=a(P(0, 1)) (3 105)

0

Let us first concentrate on the phase u > 2. Remarkably, this implies — owing to the small- E expansion
(3.42) - that the contmuous directed model has the same veloaity V and diffusion constant D as the
random-force model However, D,, does not comcide for the two models since D/D,, =1 — 1/u for the
random-force model while D,, =2D - aV/2— 2D 1n the continuum hmit of the directed model The
correct D,, would be found for a lattice spacing ¢ equal to x,/(u — 1), which 1s precisely twice the
correlation length of the trapping times 7(x), as found 1n section 3.3.3.2 With this choice of ¢, one can
define a new directed model by grouping together ¢/a sites of the first one, in the lmit a— 0 Thus we
have obtamned the desired equivalence, and it 1s physically very sensible that the “‘effective lattice
spacing” should be of the order of the correlation length between traps Remarkably, in the anomalous
phase 0 < u <2, the value of C 1s found not to depend on the choice of &, and one can simply work with
¢ = a. Hence one 1s prompted to 1dentify A with m_ ,(E7)' “p(E), which 1s calculated below (section
3 3.5). Ths leads to the conjecture that the parameters characterizing the average diffusion front of the
random-force model are those summarized i table 3.1 [Bou89a] The same results were recently
obtained in [Asl90b], where the identification with a directed walk 15 more carefully discussed It
follows that in the phase u <1, the position obeys, for large time, the law

(x(1)) 2" "T(p)sm mp (L)“ ’ (3 106)

7
X T 7y

which, for small x, becomes
(x(n) 1 < t )

X1 2p* \ 7,
This .~ dependence of the prefactor for small u 1s very important physically; indeed, one expects — as
discussed 1n section 3 3.2 — that for times t <7, = 7, e!’* the behaviour of the particle 1s insensitive to

the bias, 1e , x ~x, In” t/r, The point is that this expression correctly crosses u~*(t/r,)* for t = 7, and
2
x=xy=x,/p
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Table 3 1
Scaling forms of (P(x, f)) and diffusion behaviour of the random-force model, as a
function of the parameter u = 2F,T/a, x, =4T"a, 7, = £*12D, (D, = Tly)

_ 1 X
=0 x, In’(t/7,) f"(xl 1n2(t/7,))
o (-1 2 2
=2 5 L expl- gk + 17l
xX,/x, ~ &) lnz(t/T,)

1 /m\* (fo)
0<p<1 Z(—)f“ X

t x
f (u) — l u—(1+1m)L(C) (u~1/u) Cl —mf‘
S wt ' 2T )’ sin(mp/2)
£ lx ~ € (o)l )
B x—-Vi
I<u<2 xltl/u L:LCZA(_B O )
Vv 1 ' ~(1+17) ? TH
Yol gty gl m
V, w’ 7, 24T sn(mu/2)
E~VE, X -~ g (w)(tn)
1 2
p>2 Vi exp[—(x — V1)74D, 1]
Yool Du_ w
VO 13 ’ Do H -2
_ 3 _ 2 D _p-y
X,~Wt, x -x~2Dt, D, w2

Remark. As p~* is a decreasing function of the bias, one may point out a possible paradox with
(3.106): 1t appears that (x(¢f)) could be, due the prefactor, a decreasing function of the bias for
sufficiently small times. However, it is easy to check that this 1s only the case for t<7,, where the
diffusion is loganthmic

3 3.5. Relaxation and probability of presence at the origin

33.51 Exact calculation of (P(x, t|x,0)) for the random-force model. A very important physical
quantity, which may be related to the relaxation properties of the model, 1s the probability of presence
of the particle on its starting site, P(x, t|x,0). Its average over disorder, as we shall now briefly show,
may be computed exactly [Bou87a] for the model (3.64) (for a more detailed presentation of the
different calculation methods see [Bou89a, Asl90d])

The starting point of the method is to notice that P(x,f|x,,0) can be decomposed into the
eigenstates of a Schrodinger equation [G5] (see also [Sch86, Tos88, Te189]),

P, 3, 0) = exp( | 352 02) 5,09, a0) e 5
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Note that, using the closure relation one has indeed

¢  F(x) 1dF

HS¢n = En¢n ) HS = —DO @ + 4D0 + 3 Ex‘ (3 107)

Hj can be written as Hy =SS, where
S=-D, >+ — F) 3.108
®dx  2¢/D, (3-108)

This implies that the spectrum of Hy 1s positive, despite the fact that the “potential” F* 4D, + F'I21s
not bounded from below From a physical point of view, 1t means that the relaxation times of the
diffusion process (r, = E_ ') are all positive, as expected

From (3.107), one obtains, for all times ¢,

Py, thrg, 0) = 2 dy(xg) e

or, introducing the density of states p(E)=lm, , L™ 'L 8(E - E,),

L2

(P(x,, t]x,,0)) = Iim L f (P(x,, t]xg,0)) dx, = f dE p(E)e™™ (3 109)

—L/2 0

Thus, the density of states of Hg directly yields the average of the probability of presence at the origin
Many methods may be used to obtain p(E) The most natural one for a one-dimensional disordered
Hamultonian 1s the Dyson-Schmidt method [Dys53, Sch57, Lie66] (e.g. used 1n [Fri60, Hal65, Der84b]
to obtain the energy spectrum 1n a white noise potential) It relies on the well-known “node counting”
theorem of one-dimensional quantum mechanics, stating that the number of zeros of ¢.(x) per unit
length 1s equal to the number of states below energy E, N(E) = [ p(E') dE' Wnting (3.107) in terms
of a new variable u (this calculation 1s presented with a normalization o =4, D, =1),

u(x) = [In ¢(x)]' ~ 2 F(x) ,
one obtains a “‘Langevin equation” for u, for which x plays the role of the time,

j—;‘ =—(u’+2uu+ E) - 2ué(x) (3.110)
[with £(x) = § F(x) — u playing the role of the thermal noise]. Counting the number of zeros of ¢,(x)
amounts to counting the divergences of u. The quantity N(E) we want to calculate 1s thus exactly (in
the large-L limit) the average current ; which counts the escape “frequency” of u j1s related to the
“asymptotic” (x—> ) probability density Q(u) associated with the stochastic equation (3.110) by
N(E)=j=lim,__ Q(u)u’. One thus writes a “Fokker—Planck” equation for Q(u, x), which 1n this case
reads (see [Bou89a] for a precise discussion of the ambigwities associated with the stochastic calculus
prescription to be used — which here turns out to be Stratonovich’s)

a0 _ 4

- <2u aiu (uQ) + (u2 +2uu + E)Q)
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Once the stationary solution (dQ/dx =0) 1s known, the current j(u, E) is obtained All these
calculations can be performed explicitly [Bou87a, 89a] and one finally finds

J= S AVE) + NVE)

where J, and N, are Bessel functions of order u. Remtroducing all the original physical quantities, one
obtains

[ROVE+NAVB), E = 2k, G.11)

a

27D},

ME) =

The hmiting behaviour of N(E) for E—~0 and E—x 1s of special interest. First, for all pu,
N(E)~(EID,)""?Im for E->, i.e., one recovers the free-particle spectrum, this is expected since 1t
corresponds to the fact that at short times the particle diffuses freely (x <x,). On the contrary, the
low-energy behaviour of N(E) strongly depends on u,

x,N(E) =

E—-0Q

2In*E, w=0,
{(Erl)"/Z“‘IFZ(u), n>0. (3 112)

These resuits allow one to determine exactly ( P(x,, t|x,, 0)) through eq. (3.109), a log-log plot of
which is displayed in fig. 3.7 for different values of u. In particular, the long-time behaviour reads

2In"’t, pw=0,
[w/2* 7 (W) )*, w>0,
and thus fully confirms the physical analysis of section 3.3.3
More information on this problem can be found in [Bou89a], where, for example, the “replica

method” 1s used to calculate p(E) and the localization length A(E) associated with Hg, through its
average Green function,

X, (P(xy. t]xo, 0)) ~[

(P(x,x,—E+10")) = —(d/dE)A"(E) +1mp(E) .
335.2 Sample to sample fluctuations. For the disordered models considered here, P(x, t|x,0)

strongly fluctuates from site to site [Del89, Bou89a] (or from sample to sample). This 1s most easily seen
on the directed model of section 3.3.4.1, for which

P (t|n,0)=e"""" . (3113)
One may thus easily estimate ([P(x, t|x, 0)]?),

([P(x,t

x,0)]7) ~ 7" # (P(x, f|x,0)) ~ 7, (3.114)
which clearly displays the non-self-averaging nature of P(x, t|x, 0). In particular

—(In P(x, t|x,0)) = (W)t.
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: ) I
—4 0 4 8
tn ¢

Fig 37 Average probability of return to the origin {P(0, 1)) as a function of time ¢, i a log-log plot, and for different values of u Note the
cross-over from free diffusion (for short times) to disorder-dominated diffuston at large trmes

P(x, t|x,0) thus decays exponentially for any given sample, but its average { P(x, t|x,0)) decays as a
power law (see also [Del89])

Contranly to many random systems the average (P(x, t|x,0)) has nevertheless a direct physical
mterpretation: If one starts with a particle population uniformly spread in space, 1t represents the
fraction of parucles stll at their tunial point after time t

336. Summary and discussion

Let us summarize some mmportant physical consequences of the results obtained throughout section
3 3. Clearly, all the interesting non-Brownian features arise because of the induced broad distribution
of trapping times, resulting from the combination of exponentially rare events contributing exponential-
ly to the activation time

Such an exponential distribution (Poisson distribution) of energy barriers 1s certainly much more
general (see, e.g., [Ram85, Tam87]). A trapping time distribution with a slow power law decay thus 1s
not an exceedingly exotic possibility in physical systems. The following features are naturally associated
with such broad distributions ¢(r) ~7 ")
~ diffusion fronts (and distribution of exit times) which involve well-characterized Levy stable laws;
—a succession of “phase transitions” (where different physical quantities become singular) as u 1s
varied — corresponding to the divergence of the successive moments of (7); very important 1s the
transition between a “‘creep” phase, where the velocity 1s zero, and a “flow” phase 1n which a current
may establish, note that m this case the velocity goes continuously to zero, which 1s at variance with
other first-order depinning transitions,
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—slow, algebraic relaxation of the system at long times; or equivalently, enhanced noise power
spectrum at low frequencies.

The model considered above has also direct physical applications, either because the problem 1s truly
one dimensional, or because it can be modelled as such 1n certain circumstances. We describe some of
them 1n the next section.

337 Application to physical problems

337 1. Random-field Ising model. A magnetic domain wall, if it has a large surface tension, evolves
in a disordered material in much the same way as a point particle (the centre of mass of the domain)
under random forces, and may be modelled [Nee42] as a domain wall in a one-dimensional random-
field Ising model, a problem which 1s indeed described by the model considered here. (For recent work
on the dynamics of the random-field Ising model, see [Bru84, Gni84, May84, Nat88].)

Consider the one-dimensional Ising model in the presence of a random magnetic field; 1ts Haml-
tonian reads

=—J2S88., -2hS, (3.115)
with S, = *1 and
(hy=h, (hh)-HK=0,3,. (3.116)

Then a domain wall between a region of up spins and down spins (see fig. 3 8) will evolve 1n the sample
according to the following transition rates (assuming single spin flip dynamucs):
W.a=We AT, Wi, =W, e T (3117)

where A% corresponds to the change in energy accompanying the spin flip S,— —S," A% =2h, Those
hopping rates thus precisely correspond to the model defined above, with, 1n this case,

w=hTla, (3.118)

Thus only 1if the external field & exceeds a certain critical value A_ will the domain wall acquire a fimte
velocity For h < h_, the domain wall “creeps” according to the law

(x(t)) la~ (T%a,) " H(Wyt)* . (3.119)
: W|+1I
104 ’ T I 1+]
T T e
LT Tiedd o T T
wl,|+'|

Fig 38 Domain wall in a one-dimensional random-field Ismg model
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This analysis allows us to discuss the following problem. Suppose that the sample has been prepared in
the §, = —1 state and that an external field 4 >0 1s suddenly apphed. Then up regions will nucleate and
expand according to the laws described above If 4 <J, the nucleation rate (corresponding to the
creation of a + spin) 1s simply

r=w,e’" (3 120)

The dynamics of the whole system will thus exhibit two stages (see [Bou89g]):
Furst stage The system nucleates up spin regions up to a time ¢, defined by

x=a(Wt)"(T%a,)' 7 (Vt,f u>1), (3 121a)
and
(x/a)t, =1, (3 121b)
or
JIT+p) 2 Cu-1)/(1+p)
e Evr)"z(,T/Uh) | Zi G12)

t. 1s simply the typical time for two growing “‘up” regions to meet, since egs. (3.122) state that the
nucleation probability within the distance spanned by the domaimn wall 1n a time ¢, 1s of order 1. For
t<t, and p <1, one expects the mean magnetization to scale as (I't)t* —1 (or I'Ve* — 1 for u > 1)
Second stage When ¢ 1s of the order of ¢, M 1s nearly equal to 1ts equilibrium value M, =1 (in this
discussion we assume T <J) and slowly relaxes towards 1t according to the law (see fig. 3 9)

M- M, |~t"
Thus stage corresponds to the rare but difficult to overturn sequences of spins (k, <0 and large).

3372 Configuration transition in disordered polymers De Gennes has suggested [dGe75] that the
domamn wall between the helix and coil phases of a “heteropolymer” —see fig. 3 10 (¢ g. a random

[
M
N I
44
e T 1 _t_u
t 1+
-1 >
te t
Fig 39 Evolution of the total magnetization as a function of time in Fig 310 “Domam wall” between two configurations of a
a one-dimensional random-field Ising model prepared in a “down” heteropolymer hehx and coil “phases”

state and with an “‘up” magnetic field suddenly switched on at r=0



J -P Bouchaud and A Georges, Anomalous diffusion i disordered media 21

sequence of two species of monomers which do not have the same helix—coil transition temperature)
would evolve quite similarly to the Ising domain wall described above. This 1s simply because the free
energy variation AF(s) corresponding to a one-monomer displacement of the domain wall 1s a random
function of the arc lengths, leading to transition rates quite similar to (3.118). The latent heat released
by such a process thus resembles very much the magnetization discussed above Note that in the
original treatment of de Gennes, the critical value u =1 separating a creep (V= 0) from a flow phase
appears, even 1f the diffusion law n the creep phase was incorrectly discussed.

3.3.7.3. Dislocation motion in disordered crystals The motion of a dislocation 1n a perfect crystal
can be modelled as the dynamics of a string on an inchined washboard (see, e g., [Hir68]) Its downhill
progression proceeds as follows: The string nucleates a kink—antikink pair (fig 3.11a), which are torn
apart by the external stress, until they annihilate with the neighbouring nucleated pair (fig 3.11b),
finally resulting in the translation of the full dislocation. The motion of the kink (or the antikink) 1s thus
one dimensional, 1ts progression results 1n an energy gain for the dislocation proportional to the distance
travelled This is equivalent to saying that the kink’s position x satisfies the Langevin equation (3.64)
with F(x) = F,, where n(t) accounts for the thermal fluctuations.

If now the crystal contains foreign solute atoms randomly placed on the lattice, one must take into
account the interaction energy between those solute atoms and the dislocation If one can neglect the
motion of solute atoms (no “dynamical aging”’) and consider that they generate quenched disorder, one
may argue [Pet71, Vin86] that the kink position follows eq (3.64), with F, proportional to the external
stress and o = (F) — F? related to the concentration of solute atoms and the strength of their
interaction with the dislocation. This suggests that dislocation dynamics 1n disordered metals should
reveal very rich and interesting peculiarities. In particular, the above discussion of the dynamics of a
random-field Ising model may be partly transposed [Pet71, Vin86, Bou89g] One expects that the
average translational velocity of the whole dislocation will behave as

Vu=alt. (3 123)

where ¢_ 15 defined by egs. (3.121) (Note that the whole discussion only makes sense for W, > 1, and
that the kink energy J must be much larger than 7, so that a “kink” 1s a well-defined object ) The

a)
E, X
T = ——
T ._Fo_
b)
1 X

Fig 311 (a) Nucleation of a kink—antikink pair in a “washboard” potential (b) The kink and antikink get farther apart, corresponding to an
overall translation of the dislocation
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Fig 3 12 Typrcal stress-stramn curve resulting from the creep motion of the kinks due to disorder, for three different temperatures (a) 150K, (b)
300K, (c) 450K We have taken the kink-antikink energy equal to 10*K, and 1% mpunties each causmg a fluctuation of 1000K m the kink’s
energy Note the hinear regime for small stresses and high temperatures, and the non-linear regime for intermediate stresses and low temperatures,
mimicking a power law ¢ = o” with large n

resulting relation between the velocity of the dislocation (and hence in certain cases the rate of
deformation of the sample [Hir68]) and the applied stress has the shape depicted mn fig. 3 12 (see
[Bou89g] for more details) The plateau region could explain a similar anomalous feature observed m
gold-doped silicon

4. Anomalous diffusion in a field of random forces in more than one dimension

The diffusion behaviour of random barriers and random traps models has been investigated 1n
chapter 2 It has been shown there that, in more than one dimension, anomalous diffusion only arises
for the latter and, even 1n that case, requires an a priori broad distnibution of local trapping times*’
Various analytical techmiques can be used to study the normal diffusion properties of these models in
more than one dimenston, mainly effective medium approximations (cf section 2 4.2.3) and systematic
weak-disorder expansions The results of such an expansion for a general hopping model will be
presented 1n section 4 2 3, and the reader 1s referred to {Der83a,b] for further information.

*' This holds true provided the hopping rates display no long-range correlations
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In the present article, we rather wish to put the emphasis on anomalous diffusion induced on large
scales by a local disorder In this respect, the most interesting model to be studied 1s the diffusion 1n a
field of random forces (F(x)) (type C model), a continuum description of which 1s the d-dimensional
version of the Langevin equation*’ of chapter 3,

dx/dt = F(x) + 5(1), (4.1)
7, (O, (') =2D,8,,8(t — '), (42)

to be supplemented with an appropriate description of the distribution of (F(X)) It will be shown
below that this model retains the essential physics of anomalous diffusion in the presence of (narrow)
quenched disorder (and that, in particular, including short-range correlated randomness 1n the local
diffusion constant D(x) — the symmetric part of the hopping rates — does not lead to new effects)

It 1s the aim of this chapter to understand whether this model retains something of its rich
one-dimensional phenomenology, and whether new behaviour can arise in d >1 An obvious statement
n this respect 1s that the effect of quenched disorder tends to be weaker as the dimension 1s 1ncreased,
since more and more paths connect two given positions. We shall mainly concentrate on the case of a
zero average force (F) = 0 (the response to a small average bias will be investigated m section 4.3.3).
Even 1n that case, the above question has been the subject of numerous (and somewhat controversial)
investigations 1n the literature [Mar83, Obu83, Pal83, Luc83, Fis84, Aro84, Fis85, Kra85, 86a, Bou87b]

The original physical motivation [Mar83] was whether ultra-slow logarithmic diffusion *‘a la Sinar”
can still arise 1n more than one dimension. The answer 1s, as we shall see, 1n the affirmative, but
interestingly enough, turns out to depend on the type of geometrical constraints imposed on the random
force Indeed, in d >1, the latter 1s not always the gradient of a potential and, as a result, different
physically interesting anomalous diffusion behaviour can arise. From a techmcal pomnt of view, this
model requires the use of renormalization group techmques, to which a large part of this chapter 1s
devoted.

4.1 Characterizaton of the random force field; physical motivation

4 1.1 Geometrical constraints; range of the correlations
The distribution of (F(x)) will be taken to be Gaussian, characterized by 1ts correlation function
G,,(x —y) and mean F,

(Fx))=F,,  ([F,(x) = F,I[F,(5) = F,u]) = G, (x ) , (4.3)

all higher-order correlation functions of 3F, = F, — F, being a sum of products of two-force correla-
tions. As will be shown below, possible deviations from a Gaussian distribution would not affect the
large-time diffusion behaviour. According to the physical situation at hand, one would like to impose
different geometrical constraints on F(x). The most important cases 1n practice are (cf section 4 1 2)
(I) independent components F, (x) i each direction: G,, x§,,,
(I) “incompressibihity” constramnt: div F =0,
(IIT) potential force F(x)= —grad U(x)

*) y has been included 1n the defimtion of the “force” 1n eq (4 1), and we have set T/y = D,, the “bare” diffusion constant
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More generaily, we shall allow F(x) to be an admixture of an incompressible (transverse) part and of a
potential (longitudinal) part without cross-correlations. This 1s most easily expressed on the Fourter
transform of G, (x - y),

G,, (k)= G;(K°)(S,, =k, k,IK*) + G (k*)k Kk, IK (4 4)

The particular cases (1), (II) and (III) correspond to G = G, , G, =0 and G; =0, respectively Typical
two-dimensional realizations of a random field satisfying one of these constramts (with F,=0) are
depicted schematically 1n fig. 4.1 (taken from [Kra85]) A tracer described by the Langevin equation
(4 1) moves in this quenched field by convection along “flow hines” of F(x) and molecular diffusion
between these lmes under the action of the thermal noise n{t) The competition of these two effects
controls the diffusion properties of the tracer It 1s physically obvious that these properties can be very

R

Fig 41 Typcal configuration of a random force field 1n the following three particular cases (I) G, = G, uncorrelated components, (1I) G, =0 or
div F=0 mcompressible flow, for which the flow Lines close (possibly at infimty), (III) G, =0 or F=—~grad V potential case, for winch sinks act as
traps for the thermal particle
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different for different geometrical constramts, and that models II (1ncompressible) and III (potential)
are two extreme cases’ in the former, fast convective motion along closed flow lines 1s possible, while in
the latter the tracer 1s convected nto local wells, from which it can only escape by thermal activation.
An admixture of G, and G, allows two nearby flow hines to be of opposite directions, and thus the
tracer to escape more easily, leading to some intermediate diffusion behaviour. These qualitative
statements will indeed be confirmed by calculations

The last pomnt to be defined to characterize the model fully 1s the space dependence of G, (x) Only
the long-distance behaviour will turn out to be important for the asymptotic diffusion properties As will
be demonstrated 1n the next section, the description of certain physical situations require spatial
long-range correlations of F(x) to be considered [Mar83, Pel85, Bou87b]. We shall characterize their
decay by an exponent a (common to G; and G, ),

Gro(A(x = M) ~AGy (x—y) for Aoco (4.5)

— Short-range correlations correspond to an ntegrable correlation function (cf section 13 1) and thus
to a>d. In this case one has

G (K)~0r,, K<A®, a>d (4.6a)
— Long-range correlations arise when a < d and are such that

G ()~ o ()97 | KB<A®, a<d (4.6b)
In these expressions, A" denotes a short-distance length scale
4.12 Some physical motivations

4.12.1 Turbulent diffusion: a quenched descripnon. One can think of describing the relative™’
diffusion of a pair of particles in a turbulent flow by the Langevin equation (4 1). F(x) should then be
thought of as the difference between local velocities of two nearby points at a distance x, and subjected
to the incompressibility (type II) constraint div F =0. The limtation of this description is that the
turbulent relative velocity field is considered to be quenched (time independent) — a point to which we
shall come back below. Describing the statistical properties of the relative velocity field F(x) 1s a central
problem m all theories of turbulence. A widely used form 1s (see, e.g., [Mon71])

G(R)~ £7"R**(RIL"", (4.7)

for relative separations R 1n the range [, < R < [, /, being the dissipation length scale and [, the stirnng
length scale (below which the turbulent cascade 1s initiated). £ denotes the mean energy input. The
value u =0 corresponds to the 1941 Kolmogorov theory, while more refined models [Man74, Fri78]
taking nto account intermittent corrections at small length scales lead to u = d — d, di; being the
fractal dimension of the active region As far as diffusion properties are concerned, the important
feature of (4 7) is that the velocity field displays long-range correlations which are increasing with R n

*) Relanve diffusion 1s considered m order to get rid of the overall motion of the flud In particular (F) =0
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the range [, < R</;, the exponent a defined by (4 5) beng here
a=-3-pu/3 (<0). (4.8)

Turbulent diffusion has been the subject of numerous studies, both experimental and theoretical, which
were mitiated by Richardson’s pioneering paper [Ric26] suggesting a hyperdiffusive law (in three-
dimensional atmospheres)

RA(t)~1 (49)

Anticipating on the results of this chapter (section 4.3), 1t turns out that the diffusion exponent resulting
from (4 1) with long-range correlations (a < d, here a <0 and d = 3) can be calculated exactly when the
mncompresstbility constraint div F = 0 1s satistied, and reads v =2/(2 + a) for a <2 Inserting the value
(4.8), this leads to

R¥()~ ", 2v=3+3ul(4-p) (4.10)

This result 1s of course not new- 1t 1s well known that Richardson’s law results from Kolmogorov’s
theory, and the u-dependent mtermittent corrections in (4 10) were dermved by Hentschel and
Procaccia [Hen84], who claimed that the data of Richardson’s original paper are best fitted with a
non-zero u (=0.36), see fig. 4 2 Nevertheless, describing turbulent diffusion by the model (4 1), (4 2)
with a quenched random velocity field 1s to our knowledge an onginal suggestion of the present paper*’
It could n particular be a fruitful starting point for predicting the full diffusion front, an important 1ssue
for comparison with experiments

Log10(D/cm2 N

Logqg (R/em)

Fig 42 Richardson’s data for the scale dependence of the effective diffusion coefficient D(R) as a function of R for turbulent diffusion (in the
atmosphere), showing that R’ = r* Note that the data are best fit by a slightly stronger exponent, which can be accounted for by the “intermittency
corrections” to Kolmogorov's theory [Fri78, Hen84]

*' It 15 remarkable m this respect that the result (4 10) previously deduced basically from dimensional analysis turns out to be exact for this
model
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It should be noted that the assumption of a time independent relative velocity field 1s reasonable up to time scales of the order
of the correlation time #;, which can be estimated as [Hen84]

te~ EAMRM(R/IO)“/}

Beyond this (R-dependent) time scale, model (4 1) no longer applies, 1n this regime, Hentschel and Procaccia have suggested a
different diffusion exponent, 2v =3 +3u/(1 — ) However, because of the R-dependence of ¢, these two regimes should not be
viewed as short- and long-time regimes, and the ‘“quenched” one, eq (4 10), turns out to be the relevant one i some
experimental situations [Hen84]

Finally, one should mention that other descriptions of the turbulent diffusion problem have been
proposed, e g using Levy flights (see [Shi86, 87] and references theremn).

4122 Relaxation in systems with complex energy landscapes One can think of (4.1) with
F = —grad U (model III) as a very idealized description of the relaxation properties of a system with a
complex form of the energy U(x) as a function of position x in configuration space. Relaxation is indeed
connected to the properties of thermally activated diffusion in this complex energy landscape (fig. 4.3).
With disordered magnetic materials (such as spin glasses [Bin86], for example) in mind, this description
18 of course quite far from reality for the following reasons:
~ The topology of spin configuration space (hypercube of large dimension) 1s quite different from the
euclidean space at hand here
— Describing the energy landscape by a (quenched) random potential ignores much of the complexity of
the system.

— Describing the evolution of the system 1 terms of hopping between nearby configurations in phase
space discards the possible collective modes which may contribute sigmificantly to the relaxation
properties (e g. the domain walls).

However, one can hope that some of its consequences are sufficiently “universal” to see this model
as a useful guide. Indeed, strong evidence will be given below that, when correlations are sufficiently
long ranged, model (4.1) with a potential force displays logarithmic diffusion ““a la Swnai” in arburary
dimension [Bou87b, Mar83] (for (F) =0),

(x*(1)) ~(In )" | a<2. (4.11)

A
ENERGY

L.

"PHASE -SPACE COORDINATE”

Fig 43 Schematic plot of the energy versus a “coordinate” describing the microscopic state of a complex system (e g a spin glass)
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That (4.11) holds 1n this case was indeed suggested in [Mar83] and motivated several further works
on this model. It 1s tempting to relate the very slow low-temperature relaxation [Oci86, Ref87a.b,
Fer89] observed in systems such as spin glasses (below T,) to such ultra-slow logarithmic diffusion n
configuration space. It was pointed out in [Mar83] that the latter generates low-frequency *“1/f nose’" in
the autocorrelation function, and thus in the noise spectrum,

5

* (In f);“z_"’ (412)

T
1 ift
;131 T'fdte x, (1)
0

One should note that the condition a <2 simply means that potential correlations (and thus the typical
energy barrier) grow with distance, since (U(0)U(x)) ~ x> (see also [Fis88, Bra88a] for somewhat
related 1deas)

Whether this is a reahistic assumption when describing the energy landscape of, € g , a spin glass is to
a large extent an open question (in [Bou87b] 1t was argued that this 1s indeed the case of the energy
correlation i the Sherrington-Kirkpatrick model of a spin glass, at least for a wide range of distances)
One should note that even if potential correlations grow only up to a “length” scale L, the cross-over
time below which logarithmic diffusion applies (inverse of the frequency above which 1/f noise 1s
observed) can be huge at low temperature since

t,~exp(L'"""*kT) (4 13)

An mteresting 1ssue connected with this model 1s the effect of a non-zero bias (F) (e g , an applied
magnetic field for a spin system) Whether successive phases exist as in the one-dimensional case
(chapter 3) 1s an open question. Let us finally mention that some attempts have also been made to
describe dynamical properties of spin glasses above T, through diffusion properties n configuration
space [Cam85, 86]. The reader 1s referred to, e.g., [Ste87] for a discussion of recent ideas on the
modelling of dynamical properties of systems with a complex phase space

Other possible applications of model (4 1)-(4 3) have been suggested in [Fis84, 85, Kra85, 86a,
Aro84]

42 Relevance of disorder; weak-disorder expansions and therr failure

4.2 1 Statistical mechanism and relevance of weak disorder

42.1.1 Heunstc discussion The statistical mechanism which can lead to anomalous diffusion for
this model (in the absence of an average bias) 1s the induced correlanion m the temporal sequence of
random forces seen by the walker Ths is possible because the same value of the random force will be
seen each time the walker visits a given site (quenched disorder) This was already demonstrated on the
example of a layered medium 1 section 13 2 (which 1s indeed a particular amisotropic imut of the
model considered here)

A simple statistical argument can thus be used to understand in which cases anomalous diffusion will
anse Consider first the case where no long-range spatal correlations are present a prior: in the random
force field (a > d), and ask how weak disorder will affect a normal Brownian walker in the medium
The number of different values of the random force encountered by this walker 1n a time ¢ 1s of order

' md<2, t/Int md=2, t md>2,
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each one being encountered '~*' In ¢ and a constant number of times, respectively. Thus a long-range
temporal correlation 1n the sequence of forces encountered 1s induced only in less than two dimensions
More precisely, the extra displacement induced by weak disorder (treated perturbatively) 1s predicted
by this argument to be of order

‘ Vi, md>2,
gxtzdeF(T)a. Int(t/Int)"*~Vilnt, md=2,
tl—d/Zwltd 2~t1_d/4 , in d<2,

where the sum of correlated variables has been analyzed along the lines of section 131 Thus, weak
disorder will modify only the diffusion constant without changing the diffusion law for d >2 [Pal83].
For d <2, on the contrary, 8x, is found to be much larger than V7, indicating a failure of the
perturbative approach and the occurrence of anomalous diffusion. This will indeed be confirmed by
systematic weak-disorder expansions of the next section (section 4 2 2).

This line of argument is easily generalized to the case where long-range spatial correlations are
present [Bou87b]. Then, following the remarks of section 1 3.1, the random forces present 1n a sphere
of radius R can be grouped mto RY/N,, effectively independent “families” of N,, “almost 1dentical”
values, with

R
r'tdr const, a>d,
N, ~f - R:w{Rd—a | a<d. (4.14)
Thus, a > d and a < d correspond to the regimes of “‘short-range” and “long-range” spatial correlations,
as expected The above analysis is unchanged in the former case (a > d), while, when a <d, one has
RYN, ~ R* independent values of the force, and @ simply replaces d m the above analysis One thus
concludes [Pel85, Bou87b] that when long-range correlations are present a prior1 in the quenched
random force field, diffusion can be anomalous in any dimension provided a <2 (The relevance of such
correlations to actual physical situations has been emphasized above.)

The conclusions of the present analysis (and the more detailed results provided by the R.G method)
are summarized in fig 4 4.

GAUSSIAN

SHORT (NORMAL )
-RANGE

Fig 44 Regions of the (d, a) plane (d 1s the dimension of space, a the exponent goverming the decay of correlations) where disorder 1s “relevant”,
1€, changes the diffusion exponent » to a non-trivial value #1/2 & expansions can be performed near 2 =2 or d = 2, note, however, that, when
both 4, d are close to 2, a simultaneous expansion m 2~ d and 2 — a 1s needed, yielding new regimes in the phase diagram (“mixed” phase)
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4.2 12. Self-consistent approximation (a la Flory) of the diffusion law. Having 1dentified the
statistical mechamism as an induced long-range time correlation, one can try to push further the above
argument, and devise a Flory-like approximation of the diffusion behaviour (much along the same Iines
as 1n section 1 3 3). Assuming a diffusion law x* ~ **, the number of effectively independent values of
the random force encountered by the walker in a time ¢ reads

min(t, t'*) fa>d,
eff {mm(t, ") fa<d. (415)
The overall displacement can thus be estimated 1n the usual way as
<x[2> ~ (t/Neff) v Neff * (416)
which, self-consistently, must be of order t* This leads to
1/2, d>2,
approx={2/(2+d), d<2, a>d, (4173)
1/2, a>2,
Vappmx={2/(2+a), a<2, 9<d (4 17b)

This approximation (according to which hyperdiffusion arises in all anomalous cases) will turn out to be
quite poor 1n general, since 1t neglects all trapping effects (induced by the “potential” component of the
force) They make the visited sites highly mequivalent, and the corresponding weights should be
included n the sum (4 16). However, remarkably enough, (4 17) turns out to be exact for incompress-
ible (type II) force fields div F = 0 [Hon88a] (see also [For77]). This 1s not unexpected since n this case
the stationary probability distribution 1s constant, and the visited sites are indeed equivalent.

4 2 2. Perturbative treatment of the disorder

4.2.2.1. Systematic expansion We now turn to more quantitattve methods and show how a
systematic perturbative treatment of the disorder can be made for model (4.1). We shall keep a
non-zero {(F) =F, for completeness As m section 3 1, the basic quantity to be considered is the
Laplace transform P(x, y, E) of the probability of presence P(x, ¢y, 0), which 1s a Green function of
the Fokker-Planck operator,

—-D,AP+V-(FP)+ EP=8(x—y). (4 18)
Introducing the Fourier transform

d’
@2m)’

P(k, E)= f e *P(x,0, E), (4 19)

(4.18) 1s converted nto an mtegral equation,
ddq
2m)*

Pk, E) = P,(k, E)(l — 1k f SF(q)P(k— g, E)) : (4.20)
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Fig 45 Diagrammatic rules for a fixed environment (a) Propagators and interaction vertex (b) Graphical representation of eq (4 20) 3F 15
treated as an external source and an integration 1s carried out over the attached momentum (c) The perturbative expansion

where Py(k, E)= (D’ +iF,-k+ E)™' 15 the “free” Green function m the absence of disorder and
3F (x) = F(x) — F, is the random part of the force.

Equation (4.20) is the starting pont of a perturbative expansion 1 powers of 8F, which 1s simply
generated by iteration. This expansion 1s conveniently represented graphically, as shown in fig 4.5.

Deriving the diffusion behaviour from the large-time limit of the fixed configuration problem 1s
rather hard, and it will be convenient to consider disorder-averaged quantities (keeping in mind the
possible subtleties associated with fluctuations, mentioned in chapters 2 and 3). Owing to the Gaussian
form of the distribution of 8F, the average over disorder of the perturbation series of fig. 4.5 amounts
to a pairing of external force lines 1n all possible ways (Wick’s theorem), as depicted in fig. 4.6. This
expansion can be conveniently reorganized in the form

(P(k,E)) =[D,k* +iF,-k+ E— 3(k, E)] ", (4.21)
k -
b — > — =V Gpy (k) a)
<Pk E)> = + Lo PO A W S U s W WY )
FhEY= [N 4 Lo, 8 e e

Fig 4 6 Diagrammatic rules for the disorder-averaged Green functions (a) Propagator of the random force, the mdices u and » are contracted with
the incoming momenta at the vertices (b) Perturbative expansion of {P(k, E)) (c) Perturbative expansion of the self-energy (one-particle
wrreducible graphs)
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where the “self-energy™ 3(k, E) mvolves only diagrams which cannot be disconnected by cutting a P,
propagator (‘“one-particle irreducible” diagrams, see fig 4.6c)

4 2.2.2. Furst-order corrections to the diffusion constant and the failure of nawve perturbations. The
above expansion can be used to obtain the disorder-induced corrections to the diffusion constant. For a
zero external bias (F,=0), D,, 1s easily seen to be given by

D, =D,—d%/3k’

k=E=0 (4.22)
The first-order contribution to the self-energy 1s obtamed from the first diagram in fig 4 6¢ as

dq k.G, (9k,—q,)

>k, E)=- . 4.23
(k. E) (2m)" Dy(k—q)’ +1F,-(k—q)+ E (423)
This expresston 1s then expanded up to second order 1n k to yield, for F, =0 [Aro84]*’,
D . (1 ~ 1) 1 [ d% Gk 11 [ d% G (K) (424)
D, d/ D} ) @m)* K d p;J) @2m)' K

Thus, the transverse (incompressible) part of the random force increases D, while the longitudinal
(potential) part decreases 1t, this 1s expected on physical grounds, as emphasized i section 4.1.1.

The most important remark to be made on (4.24) 1s that the corrections to D/D, are found to diverge
(for d =2 when a > d, and for a <2 when a < d). Ths 1s due to the small-k (“infrared”) singularities of
the integrals in (4.24), as 1s clear from the small-k behaviour of GT,L(kZ) given by (4.6) This failure of
naive perturbation theory is of course the signal of the occurrence of anomalous diffusion; this fully
confirms the analysis of the previous section as summanized in fig. 4.4 More sophisticated methods
have to be used to study this anomalous diffusion behaviour; this 1s the aim of the renormalization
group reviewed in section 4 3

4.2 2 3. Connection with critical phenomena As emphasized 1n chapter 1, the large-time himit of a
random walk process can i fact be viewed as a critical phenomenon. Indeed, n this hmut, a CLT
applies and (P(x, 1)) takes a scaling form characterized by a few relevant parameters within some
attraction basin (“‘universality class”) Table 4 1 summarizes this general connection In this frame-
work, anomalous diffusion appears as a departure from mean-field (Brownian) behaviour and 1s
signalled, as 1s well known for critical phenomena, by long-distance divergences in the naive perturba-
tion approach Note that, at finite time (non-zero E), an infrared cut-off k_ ~V E/D, 1s present,
which defines the critical (anomalous diffusion) regime at the mean-field level as

t> A"YD, (molecular diffusion time) (425)

In an analogous way, a non-zero average bias also introduces a cut-off k__~ F,/D,, even if the
infimte-time limit £ =0 1s taken first. This 1s because the presence of an average bias destroys the
induced long-range time correlation (cf. section 1 3 2 and section 4 2 1 1) Thus the imit F;— 0 at E =0

*) 1t 15 understood that these integrals imply a short-distance cut-off Kpex ~ A~" Note that fluctuations are expected to be weak above the critical
dimension, so that D 15 indeed obtained despite the averaging procedure (D,, = D)
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Table 4 1
Duiffusion process Phase transition
Probability of presence P(x, E) Spin-spin correlation (S(0)S(x)) ,
E T-T,
t—o (E>0) T-T,
Central mt theorem ( P(x, E))— |x| **f[lx| /£(E)) Cntical scaling form {S(0)S(x)) ~ |x|>~*""f[|x|/&(T)]
Diffusion exponent £(E)~E ™" (Ax’~¢) Correlation length critical exponent &(T)~|T—T,|™"
Probabihty conservation [ d“x P(x, E)=1/E Divergence of susceptibility y = { d’x (S(0)S(x)} ~|T - T.}"
1= »(2—7) (one single independent exponent) y=v(2-1)
Browman diffusion v=31, =0 Mean-field (Gausstan) behaviour v =3, n=0
Py(k, E)= (D’ + E)™' (5(0)S(k)) =(k*+T-T)"

is also a critical limit, defined by (at the mean-field level)
Pe=A"'F/D,<1. (4.26)

This dimensionless number 1s known as the microscopic Péclet number of the flow, and Pe <1 defines
the regime in which diffusion effects dominate over convective effects

4224 Formulation as a zero-component field theory the replica tnck It 1s most convenient to have a more global
representation of the above perturbation series To this aim, one can ntroduce the generating function

71.11= [ Do Dé exp(5(6. )+ [ Ja + [ 13), @)

where ¢(x) and $(x) are independent fields 2 la Martin-Siggia-Rose [Mar73, dDo78], and the action S reads

(6. )= [ a'x ${E6 - D, 46 + V- (Fo)] (+28)
It 1s easily seen, by successive integration over ¢ and é, that

82

P(x,y,E)E—IWI

0 Z[J, ;-0 (429)

The perturbative expansion of (4 29) indeed comcides with the rules of fig 4 5 for a fixed configuration (3F)*
Averaging over disorder of eq (4 29) 1s made difficult by the logarithm on the r h s A way to overcome this difficulty 1s to use
the celebrated “replica trick”, which rehes on the identity

= N_
InZ= zlvl_IPo ((Z"-1)/N]

Computing Z" leads to the mtroduction of N copies (¢°, $%),a=1, N, of the fields The average over the Gaussian force
can then easily be taken, and one finally obtains [Kra85, 86a, Bou87b]

(P(x,y, B)) =Im 5 2 (6"®)°(1)s,.. (430)

5.9 61=2 j d'x (E¢°d" + Dy 0,4° 8, — F, 6" 8,4°)

a

+3 3 [ty 0 8,80 6= 080 0.8°0) (431)

*)The Fokker-Planck operator 1s not a Hermitian operator, and the global convergence of the mtegration (4 27) could be questionable
However, we shall only be concerned with 1ts perturbative meaning
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The perturbation expansion m G, of this field theory comcides with the rules of fig 4 6 In particular, the zero-component limit
taken order by order cancels all closed loops of P, propagators (which were indeed absent 1n fig 4 6), much in the same way as
for the self-avoiding walk problem (section 1 3 3, and [dGe72]) A different field-theoretical representation of this problem can be
used, e g , by keeping an explicit time dependence [Fis84, Pel85]

423 Weak-disorder expansions for general lattice hopping models

For the sake of completeness, we shall quote here the results of a weak-disorder expansion due to Derrida and Luck [Der83b},
valid for a large class of hopping models on discrete lattices described by the master equation (2 1) The hopping rates W, are
decomposed 1nto a translationally invaniant and a random part,

W, =W,(x—x')+3W,_ (4 32)

No assumption 1s made on the symmetry of 8W,_ , nor are the jumps restricted to nearest neighbours only However, it was
assumed 1 [Der83b] (for the mere sake of simplicity) that the paws (8W,, , 8W, ) were independent random vanables from hink
to hnk This, unfortunately, does not allow one to impose various geometrical constraints such as (4 4) (except when G, = G,)
The technique used m [Der83b] 1s a generalization of the steady-state techmque for a periodized sample mtroduced by Dernda
for d =1 1n [Der83a] and bnefly presented 1n section 311
Here, we only quote the results for the expansion of the velocity V, and diffusion tensor D, up to the first non-trivial order in
the disorder, 1 ¢ , up to order n =2 1 the moments,
C,(x—x")y=03W._ 73w, ) (4 33)

ks

The results of [Der83b] read*’
V, =2 2,W(2) + 2 2,[C(2) ~ Cul(2))2) (4 34)
D=5 22,2 @) + 5 S 2,2[Cu(0) + Cu@ME) + 5 oy W)+ 20, Wl MCala) ~ CoG) . (439)

where /(z) and J(z) are mntegrals over the Brilloun zone B =[—, 7]

[ d% e’ -1
IM_LMVM@—MM’

dg e -1
5 @m0 - W)

J(z)=

with W,(q) =X, W,(z) ° The expanston of the velocity was m fact given up to n =4 n [Der83b)

This expansion can be apphed to the random barrier model (symmetric disorder W, . = W,, ), for which 1t has been mentioned
in section 2 4 2 2 that no exact expression of the diffusion constant 1s known mn more than one dimension It 1s then found that the
effective medium result D = a’/Wy,,, with Wy,,, given by (2 53) 1s exact 1n first order [Der83b]

When applied to asymmetric disorder, infrared divergences are found below d =2 [Der83b], of the same nature as those
described 1n section 4 2 2 2 for G, = G, and short-range correlations As far as large-time diffusion properties are concerned, the
continuum model (4 1) retans all the important features of the onginal lattice model, provided one 1dentifies o, = o, = ¢ with

2 x,x,[Co(x) = Cyy(x)] = 08, (4 36)

[Note that eq (4 24) for D 1s recovered by taking the continuum limut of (4 35)] Remarkably, a “critical phase” with V=0 (cf
section 3 3 2) 1s correctly predicted by the expansion mn one dimension [Der83b}

4 3 Anomalous diffusion behaviour from renormalization group methods

431 The renormalization group strategy
4.3.1 1. Basic ideas Quantitative analysis of the anomalous diffusion laws arising when disorder is

*) The lattice spacing has been set equal to one 1n these expressions
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“relevant” 1s best handled by renormalization group (RG) methods. The main 1deas on which these
methods rely can be summarized as follows. A detailed mtroduction to renormalization group 1deas n
the context of equilibrium critical phenomena can be found in a number of textbooks. Application to
dynamucs along lines very simular to those followed here can be found in [Hoh77, Ma75, For77].

(i) Since large-time diffusion behaviour depends only on large-scale features of the problem at hand,
one would like to define a “‘large-scale effective dynamics” by integrating out short-distance degrees of
freedom To do so, 1t 1s convenient to work mn Fourier space and to separate the modes in two shells,
0<k<A/band A/b<k< A, where b 1s some arbitrary scaling factor and A the short-distance cut-off
Accordingly

P(k, E)= P<(k; E)+ P"(k; E) (4 37)

where P~ (P”) 1s non-zero m the shell [0, A/b] ([A/b, A]) only. One would then like to express
P”(k, E) as a function of P~(k; E) and F(k) by solving the integral equation (4 19) This would allow
one to obtan an equation satisfied by P=(k, E), of which all modes k € [A/b, A] can be elmnated by
averaging over the corresponding modes of F(k).

(n) This large-scale dynamucs for P=(k, E) 1s then compared to the original one by making a scale
transformation,

kK'=bk, E'=a(b)E, (4 38)

such that the range of k" 1s again (0, A). At this stage a(b) 1s an arbitrary function The renormalization
group transformation R, of the parameters ? = (D,, o, oy, . . .) specifying the model 1s then obtamed
by requiring that

k<Alb, (P(k E;P))=a(b){P(bk, a(b)E, R,(P))) (4.39)

(The factor a(b) multiplying P on the r.h.s. 1s dictated by the conservation of probability (see table 4 1),
which also msures that the “critical point” remains at £ =0 without being shifted.)

(1ir) This procedure is carried out 1 a recursive way This m principle requires one to extend the
parameter space 2 to include all new parameters generated by the process. (In fact, in favourable cases,
only a finite number of relevant parameters need to be retaned, see below ) The function a(b) 1s then
determined by the requirement that.a fixed point P* = R,(P*) 1s reached when the procedure 1s
carried ad infimtum. This is equivalent to saying that (P(k, E)) obeys a generalized central limut
theorem Indeed, let us assume for simplicity that a(b) behaves as a power law for large b,

a(b)~b"" (b—>x). (4.40)

Then, taking the limit b—> n (4.39) i such a way that a(b)E remains constant [e.g , a(b)E =1]
leads to

(P(k, E, @)>ﬁ% (P(KIE”, 1, P*)) , (4.41)

k—0

which is, in Founer-Laplace space, the very expression of a generalized CLT, » being the diffusion
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exponent. a(b) need not be a pure power law for large b, in which case k/E” 1s replaced by ko~ '(1/E)
(a ' bemng the reciprocal function) and the diffusion behaviour is not a pure power law of time. Note
that the r.h.s of (4 40) involves only quantities at the fixed point, which nsures the universality of the
limiting scaling form of ( P(x, t)) within the attraction basin of 2*.

(iv) A fourth step mnvolves the analysis of the attraction basins and of the stability of the different
possible fixed points. Normal diffusion corresponds to a “Gaussian fixed point”, for which a(b) = b’
and such that the scaling function 1s Gaussian (normal CLT). Anomalous diffusion 1s associated with
the occurrence of a non-Gaussian renormalization group fixed point

In practice, however, the limitation of the method lies in step (i). Indeed, solving for P~ requires
one to handle the integral equation (4 19) [1f one could solve it exactly, there would be no need for any
of the subsequent steps (11)—(1v)']. The crucial point 1s that perturbative methods can now be safely
used, since one has to deal only with modes in the shell [A/b, A], thereby avoiding nfrared
divergences. However, this imples that non-trivial fixed points can only be 1dentified consistently by
perturbative techniques when they depart from the Gaussian fixed point by an mfinitesimal amount In
fact, only a systematic expansion of the fixed points and associated diffusion exponents in the small
parameter

e=2—-d, fora>d, e=2—a, fora<d

(measuring the distance from the critical boundaries 1n fig 4 4) can thus be devised in general. Thus s,
however, only a limitation of a technical nature, and the fundamental concepts of the renormalization
group (together with their probabilistic meaning) are in no way hmited to perturbative methods.
Indeed, we shall see below that in some remarkable cases, the anomalous diffusion behaviour of model
(4 1) can be analyzed beyond the framework of ¢-expansions

Remark. The above presentation of the RG method 1s meant to emphasize 1ts probabilistic content.
It 1s also somewhat closer 1n spirtt to Wilson’s original 1deas (see, e g, [Wil74]) and to real-space
approaches. However, beyond one-loop order (and all the more 1f one wants to handle properties of all
orders) 1t 1s most helpful to make use of a field-theoretic formulation along the lines of, e.g , [Bre76].
The replicated field theory (4 31) - or related formulations - 1s in this respect a very convenient starting
point. This 1s the approach followed 1n most papers quoted above.

4312 One-loop calculations Step (1) of the RG program 1s convenmently carried through perturbatively using the
diagrammatic representation established 1n section 4 22 1 The main steps are illustrated by fig 4 7a—f The mtegral equation
satisfied by P~ (fig 4 7a) 1s used 1n the one satisfied by P~ (fig 4 7b) to obtan an expression of the latter n which P~ has been
elimiated up to some desired order (fig 4 7c) One then averages over the modes A/b < k < A of the random force The integral
equation obtaned n this way (fig 4 7d) 1s then compared to the onginal one One sees that they can be put 1n a similar form,
provided the bare two-point function 1s corrected by a self-energy term, and interaction with the random force 1s corrected by the
last two diagrams of fig 4 7d (the last one being a non-local correction)

This can be turned nto a correction §,D to the diffusion coefficient and 8,0, 8,0, to the correlator of the random force,
associated, at first (one-loop) order, with diagrams 4 7e and 4 7f, respectively All momentum integrations mvolved 1n these
diagrams are restricted to the shell A/b <k < A, and are thus convergent As an example, the correction 5, D can be simply read
off from (4 23),

3,D A, 1-p@2

5 ==p - d o —d o] —— ¢, =2""r "I (d/2) (442)

Replacing A" 7> by A*™* and b™"" by b, one obtains the corresponding expression for a <d It turns out to be useful to



J -P Bouchaud and A Georges, Anomalous diffusion in disordered media 227

X X
a) == = —f—+ + —4 A=
¥ T
b) — = + Lfoe ¢ — AL
¥ X ¥
1 HE
+ ! + |IIL

c)

Y H
+ } + 1 ,I
X x ¥ x
s WS SN VS VR
KA R
+ A WAWE
+ ee-
AN
d) ¢ >F> = e 4
H
4 ———pide—a
x ¥
+ ——L/—i=+
+
,/+\\
e) L,
i —
f) =i + ¥
\\)4/’ e

Fig 47 Renormalization procedure carried through perturbatively Moments n the ntegrated shell [A/b, A] are indicated by a bar on the
propagator See text for an explanation of (a)-(f)

define dimensionless couphng constants by

: iy, (A2, a>d,
= Tk e - a4 24 (483

Performing the rescaling (4 37) of space and time 1s then a simple matter of dimensional counting Since x'%/t' = [«(b)/b*]x%/t and
A2 =(A/b)"*b*"?, the RG transformation of the parameters D and g, , reads

#,(D) =[a(8) 15D +5,D) .

(444)
Ry(8r )= bz_d(gr L+3,8:.) (a>4d)

(d being replaced by a m the last equation 1n the case a < d)

We shall now quote the result of explicit calculations of this RG transformation, up to two-loop order for short-range
correlations (a > d) [Luc83, Fis84, 85, Aro84, Kra85, 86a] and up to one-loop order in the long-range case a < d [Pel85, Bou87b,
Hon88a] (the two-loop result was obtained recently for the latter case as well, see [Hon88a]) This 1s convemently expressed in
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differential form, by considering an infinitesimal scale transformation and retaining only first order It 1s helpful to set

i

'

b=e', a(b)=exp(fyd(—5,))~

0

and to denote the “running parameters” (4 44) by D(]). g, (I)
In the short-range case (a > d), the results read

d(ln D)/dl=-2+ v i)+ 81— 8L~ 2818 -
d(gT)/dl:EgT 7gT(2gT_gl)_ngL(ng:}’g[)* (4 45)

d(gl )di= €81 ~ 818 +ngL(gT+gL) »

where e =2-d
For long-range correlations a < d. one obtains at one loop

dn Dy/di=-2+v )+ g, —g/(d—1).
d( g, )/dl=eg, =287, (4 46)

d(g[ ydi= &8¢ =288 -

with £ =2 — a 1 this case

4.32 The anomalous diffusion behaviour: g-expansion and exact results®

The RG equations (4.45) and (4.46) behave 1n a drastically different way in the different regions of
the (d, a) plane of fig 4 4-

(1) When ¢ <0, namely for d > 2 n the short-range case (a > d) and for a > 2 in the long-range case
(a < d), the Gaussian fixed pomnt g5 = g; =0 1s stable, and g, , (/) converge exponentially fast to zero
when /— 0. The function »(/) 1s determined by the requirement that a fixed point 1s reached and thus
that dIn D/dIn /-0 at large [, thus »(l)—2 for /-« and a(b)~ b’, which 1s the Browman result
(v =1/2) Daffusion 1s thus predicted to be normal in this region, as expected

(1) When ¢>0, namely when d <2 1n the short-range case and a <2 i the long-range case, the
flow n the (g, g, ) plane corresponding to eqs (4 45) and (4 46) 1s depicted 1n figs 4 8a and 4.8b,
respectively Non-trivial fixed points appear (even a line of fixed pomnts in the long-range case') The
corresponding anomalous diffusion behaviour 1s obtamned (in general, as an e-expansion) from the
behaviour of the function v(!), which 1s determined by the same requirement as above If v(/)— v for
|-, one has a(b)~e""~b'" and hence v 1s the diffusion exponent

(m) For e=0(d=21f a>d, a=21f a<d, corresponding to the boundary of the domain n fig
4 4), the Gaussian fixed point 1s only margmally stable. g(/) and g, (/) again approach zero as /— =,
but more slowly than n case (1) (as a power law). As a result, logarithmic modifications of the
Brownian diffusion behaviour are found

We now describe the types of diffusion behaviour, which for convenience are summarised 1n table
42

4321 “Generic” models o, #0, o #0 The behaviour of a generic situation 1s most different n
the short-range and 1n the long-range correlated case. For short-range correlations, the unique fixed

*)1t 15 clear that the diffusion exponent v as calculated from (4 41) characterizes the width of the average diffusion front (P(x, 1)) In the
following, x’(f) =" 1s understood m this sense



J -P Bouchaud and A Georges, Anomalous diffusion in disordered media 229

£=2-4d
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Fig 48 Renormalization group flows n the (g;. g ) plane (a) m the case of short-range correlations (a > d), (b) i the case of long-range
correlations (a < d) Note that there appears a /ine of fixed ponts, which 15 shown as a solid line to order ¢ and as a dotted hne to order &

pomnt (I) gk=g*=¢+2¢ +--- is reached starting from (g;, g, ) with g, and g, non-zero At large
scales, the possible correlations between each component of the random force at a given point are thus
washed out. Corrections to normal diffusion only come in at two-loop order and are universal Using
(4.45), they are found to be [Luc83, 84, 86, Fis84]:

)~ 4 d<2,

- (4.47)
x()~2D(1+4/Int)y, d=2.

This picture is drastically modified in the long-range case There, a line of fixed poimnt arises
[Bou87b(E), Hon88a] This can be shown to hold to all orders in the perturbative expansion [Hon88a]
(the one-loop equations of the line g* = /2 bemng of course modified)*’. As a result, the anomalous
diffusion exponent 1s not unwersal: it continuously depends on the ratio p = 0,/0, measuring the

Table 42
Behaviour of x*(z)
Short range, a>d, e=2-4d Long range, a<d,e=2-a
d=2 d<2 a=2 a<?2
“Generic” 2D,H(1+4/In t) t1-52+ 13 Tt t)(d—l;p)/(;—l)‘ {) #pY firternd-impa-n -y #p.
(0. 07) ( _4—a _) _ 1-e2(4-d)/8d-1)
. 2D0t1+2(d_1) lnt P pc t42 » P p;
Incompressible Vit e Vint e
divF =0 (g, =0) . )
c e
Potential >, e 1+ 3 UIL_)Z (In £~ i, 3 1+ ﬁ ZL: + (Ingy"*=?
F=-VU (0;=0) g o o
Do, =d-1+

*) This results from the fact that the 1PI function T sess 1N the field-theoretical representation of section 2 2 4 does not diverge in the long-range
case As a result 8¢ =80, to all orders and thus the relaton g B8, + g, B+ =0 holds between B-functions
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“compressibility” of the medium One obtains
2 2 ed—1-p 2
x~t", 2v=1—-57 ——+0(&"), a<2,
LR 4 d-1 (4 48)
xX(t) ~ t(In £)! " PRTD a=2

This corresponds to hyperdiffusion for p < p. and hypodiffusion for p > p_, where p. 1s a critical value
equal to p, =d —1 at one-loop order
Exactly at p = p_, a two-loop analysis 1s required and yields [Hon88a]

v=1-(@4-d)/8d-1)+ ., a<2,
x(t)~2D0t<1+————2(d_1) i)’ a=2

The relevance of these results to turbulent diffusion (section 4 1 2.1) 1s intriguing  Despite the mamifest
oversimplicity of the model, could some continuous dependence on compressibility be observed for pair
diffusion 1n compressible turbulent flows?

Remark All the results quoted above are e-expansions such that

—1n the short-range case, ¢ =2 — d and a 1s kept constant, a >4,

—1n the long-range case, ¢ =2 —a and d 1s fixed to a value d >2

In the neighbourhood of the point a = d = 2, a sumultaneous expansion in both parameters 2 — d and 2 — a must be performed, and
the precise location of the boundaries of “‘short-range” and “long-range” umversahty classes must be determmed This analysis
has been performed at one-loop order in [Gev87, Hon88a], in the intermediate region, a third “mixed” universality class 1s found
(whose boundanes are depicted in fig 4 4) In this region, different fixed points appear and it turns out furthermore that the
diffusion laws can be modulated by oscillatory amplitudes [Gev87] As expected, the diffusion exponents are found to vary in a
continuous way from one region to another (on this point, see also [Hon88b])

4322 Incompressible models. exact diffusion behaviour. The diffusion behaviour of incompress-
ible models, o; =0, 1s associated with the fixed pomnt (II): gf =0, g5#0 1n figs 4 8a, b However,
remarkably enough, an all-order analysis can be performed for these models, allowing one to obtain the
exact diffusion behaviour for arbitrary values of a and d (not necessarily close to 2). This was first
realized by Forster, Nelson and Stephen [For77] in a different context and reanalyzed recently
[Hon88a] It stems from the fact that, due to symmetry properties [Hon88a], the RG equations (4.45),
(4 46) 1nvolve only one independent function,

dinD/dl==-2+v ')+ e(g), dg/dl=ge-20(g)]. (4 50)

@(g;) 1s not known to all orders, but, from (4.50), 1ts value at the non-trivial fixed point (if any) has to
be ¢(g3) = /2 and the diffusion exponent reads

o [4/2+d)., 1<d<2 (SR),
v=(2-¢/2) ={4/(2+a). a<2  (LR) (451)

The self-consistent (“‘Flory-type”’) approximation devised in section 4.2.1 1s thus exact for incompress-
ible models (In one dimension, where the constraint div F =0 mmplies a constant F, the non-trivial
fixed point presumably no longer exists ) The implications of (4.51) for turbulent diffusion have been
emphasized 1n section 4 1.2.1)
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4 3.2.3. Potential case’ strong disorder fixed pont and logarithmic diffusion. For potential models
(F = —grad U, o =0), 1t 1s seen from (4.45) and (4.46) that no corrections to the RG function dg; /d/
arise up to two-loop order. This is indeed not fortuitous, and 1t has first been shown in [Bou87b] that it
holds true to all orders of perturbation theory for both short-range and long-range correlations (see also
the arguments of [Kra86b], and the recent detailed proof given in [Hon89a]) Thus dg,/d/ = eg;, and

g()= ggbs = gg e”.

In the margmnal situations (d = 2 for short-range, a = 2 for long-range), g; () thus remains equal to its
bare value g! = o, D;%c,(1-d™"), and this results in a non-universal diffusion exponent continuously
depending on the strength of disorder,

1 _,, 1o _

EZ‘1+&an’ d=2 (SR),

. (4.52)
1, % 0 X -

=t g pit s 2 (LR).

(In [Bou87b(E)]. 1t was suggested that these expressions could well have no corrections at higher orders
in o, ; this has indeed very recently been proven to hold n the SR case; see [Hon89b]. For the LR case,
see [Der90].)

Remark The physical onigmn of this dependence of the diffusion exponents on the strength of disorder 1s the loganthmic
increase of the typical potential barner with distance (see also [Tos89]),

AU(x)~Va, Inx (453)

This raises the question why the results (4 52) (which are dertved from a RG analysis of the disorder-averaged quantity {(P(x, 1)})
do not agree with a natve Arrhenius argument Indeed, (4 53) suggests that the typical diffusion time over a distance x 1s of order

t~x* exp(Va, Inx) (4 54)

(a tnal frequency of order x’, corresponding to free diffusion, has been mcluded) This argument suggests the following typical
diffusion behaviour:

() ~Vir Y (4 55)

which 1s not a pure power law (though 1t does depend contnuously on ;) In a restricted ime nterval (4 55) looks like an
effective power law

frmeveL (4 56)

When disorder is relevant (that is, for d <2 in the short-range case and for a <2 in the long-range
case), g; (/) 1s driven to infinity, and one should know the large-/ behaviour of the RG function dg; /d!
to conclude. However, since an infinite disorder fixed point controls the physics at large scale, it is most
likely that the activation argument leading to Sinai’s behaviour in the one-dimensional case (section
3.3.2) still applies This suggests that logarithmic diffusion generahzing Sinai’s finding does exist in
arburary dimension, provided the typical potential barrier increases with distance,

P ~(n )P d<2 (SR),

L (4.57)
)~ )¥® ™ a<2 (LR).
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The last result has indeed been proven rigorously to hold for a closely related hopping model on a
lattice, by Durrett [Dur86]

Numerical simulations of potential models have recently been performed by Pettim [Pet89, Bou89h]
in d =2 for different values of a Preliminary results are displayed i fig 4.9. They indeed provide
evidence that diffusion 1s normal for a>2, slower than any power law for a<2 and depends
continuously on o, (becoming slower when o, increases) for a =2 No quantitative fit of the diffusion
behaviour has yet been made for these results

4 3.3 The effect of a small bus F,

In the presence of an average bias F;), one expects that i general long-range time correlation can no
longer be induced and that an asymptotic velocity V will characterize the large-time behaviour of the
mean position How V' depends on Fj 1s the question one wants to answer. This can be studied using the
weak-disorder expansion techmques introduced m section 422. A one-loop calculation of the
self-energy (4 23) yields the correction to V at first order m G,

ddq qGL(qz)

. + O(K* 458
2m?* D,g’ —iF,-q+E ) (4 58)

z“)(k):k-f

at " 4 -

1 L 1 1 1 1 i
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‘En()—(z(_t» = f(ft)
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Fig 49 Numerical simulations performed by Pettimi (unpublished) {Pet89, Bou8%h] on the potential model m two dimensions exhibiting power law
correlations These results are in qualitative agreement with the predicted behaviour (4 52)-(4 §7) Note in particular the dependence of » on o for
a=2
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For d >2 in the short-range case, and a > 2 m the long-range one, this correction does not display any
large-distance singularity when F, goes to zero, and one can safely expand to find the linear response n
Fy,

1 [ dq Gu(q)
V=FO<1 - 1D i 5 ) .
0 (2m) q
As 15 clear from expression (4.24) of the diffusion constant to the same order, this expression does not
in general satisfy the Einstein relation, V.= [D(F, = 0)/D,]F,, except 1n the potential case G =0 (this
1s connected with the existence of a stationary state without steady-state current, see chapter 5).
When disorder becomes relevant, (4 58) behaves as a non-linear power of F; for small F, signalling
failure of linear response theory; indeed, 1t has been emphasized in section 4 2.2.3 that the limit F,—0
1s also a crtical limit Here agamn, RG methods have to be used [Luc83, Bou87b] to find the
dependence of V on F, Along lines very similar to the above, one finds that linear response is violated
only be logarithmic factors in margmal cases, and that for d <2 (SR) and a <2 (LR), a non-linear
behaviour characterized by a new critical exponent ¢ 1s found,

V~F%. (4.59)

As above, ¢ can be expanded n powers of ¢ =2 — d (SR) or 2 — a (LR); the results are displayed in
table 4 3. Incompressible and potential models again turn out to be special cases. In the former case, no
correction to the velocity of the pure model (and thus to linear response) 1s found at any order. V= F,
(this follows from the fact that the steady-state current is simply proportional to F(x) since P = constant
is the steady state m the case div F =0, see section 2.1.4) For potential models, a non-universal law 1s
found 1n the marginal cases, while for d <2 (SR) or a <2 (LR), perturbative calculations do not allow a
conclusion. Thus, the nature of the response to an external bias for potential models remains an open
problem: it could well be that a zero-velocity phase (for F below a threshold F; ) does exist, as 1n one
dimension (Let us remark that the correct one-dimensional behaviour does show up 1n (4.58) [Luc83] )

In the presence of F,, the weak-disorder expansion of the diffusion constant involves the integral

G 2
f dq — 1) , (4.60)
Dyg” +1F;-q+ E

Table 4 3
Response V[F,]

Short range, a>d, e=2-d Long range, a<d, e=2-a

d=2 d<2 a=2 a<2
“Generic” F,/In(1/F,) Fy'* F)(In1/F,) "™ p#p, Fyreea gt p
(UL’ UT)
Incompressible V=F, V=F, V=F, V=F,
dvF=0 (o, =0)
Potential

F=-VU (0,=0)
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in which the hmit £— 0 should be taken before the small-F, behaviour is studied It 1s easily seen that.
—1n the SR case a fimte “dispersion” constant 1s found for any dimension d >1, with a non-hnear
dependence on F, for 1<d <2,

D~F81/u—2)(p~vl/1/“2 : (4.61)

~in the LR case, a finite D 1s found only for a > 1 (with agan D ~ F{!”"*? for 1 <a <2, fora<1, the
E—0 hmit gives rise to a divergence in (4.60) even at fimte F,, signalling an anomalous dispersion
regime, first analyzed in [Koc89] (see also [G14, Dou89a)) for incompressible models, for which one can
show that

Ax~ 77 (4.62)

This 1s also discussed in section 5.7. In the general case, a RG expansion of » in powers of 1~ 4 could
be performed.
Thus we see that a variety of responses to a small bias can be observed 1 a disordered medium.
~ linear response obeying the Einstein relation,
- linear response violating the Einstein relation,
- violation of linear response: V~ F},
—anomalous drift behaviour x ~ ¢*
Chapter 5 1s devoted to an analysis of such problems in a more general framework.

5. Response to a bias, dispersion effects

We would like to discuss, 1 this chapter, how an external bias may perturb the diffusing particle.
This situation has already been encountered 1n chapter 3 and section 4 3.3; we intend to give here a
wider overview of the effect of a bias and of the resulting evolution laws. We first discuss the general
features of the response to a weak bias in disordered media (section 5.1-54), and then turn to
dispersion effects (5.6) Strong bias situations are considered 1 section 5 5.

5 1. The effect of a weak bias on a normal diffusion process: linear response and the vahdity of
Einstemn’s relation

5.11. The case of a homogeneous medium

Consider first an unbiased random walker 1n a homogeneous medium, that we take for simplicity to
be a one-dimensional lattice*’ If one imposes a weak external force F,, the hopping rates will read

Wn‘n+l = WO eiaFO/ZkT = W(— ’ Wn+1 n = WO e+aF0/2kT = Wﬁ (5 1)
From the general relations (3.23), one directly obtamns x = V¢ with

V=a(W_-W_), (52)

*) One could have chosen to work with the continuous Langevin equation yx = F; + 7(t}, for which 1t 1s easy to prove that D = kT/y, a relation
equivalent to (5 3)
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or, for F,—0,
V= (W,a"kT)F,= D,F,/kT , (5.3)

where D, = a’W, 1s the diffusion constant when F, =0.

Thus, the response to a weak uniform external field exhibits three main features in the absence of
disorder:

(1) a velocity appears: the mean position increases linearly with time;

(ii) this velocity depends linearly on the external force;

(iti) the mobility m = V/F, is equal to the diffusion constant without bias divided by kT (Einstein’s
fluctuation—dissipation relation).

Let us emphasize that on a discrete lattice, linear response only holds as long as the external bias is
weak The full expression for V indeed reads

V=2W,a sinh(aF,/2kT) . (54)

51.2. Validity of Einstewn’s relation in a disordered medium

As is already clear from the results of section 3.3 and 4.3.3, disorder may ruin any of the above three
properties However, when the unbiased diffusion process is normal, (1) and (ii) still apply in most
cases; however, point (1i1) can be in trouble, depending on the type of disorder at hand. We briefly
summarize here the situation for models A, B and C when unbiased diffusion is normal. In some
exceptional circumstances, properties (i) or (ii) can also be violated even when the unbiased diffusion 1s
normal; such an example will be discussed in section 5.5.
* Type A models (symmetric random barriers) always obey Einstemn’s relation. In one dimension, this
1s easily proven from the general formulas (3.23) and (3 45). For the hopping rates

_ —aFy/2kT _ +aF,/2kT
W n+l T W € 0 ? Wn+1,n - Wn € 0 ? (55)

n n

one indeed obtains (for F,— 0)
V=a*(1/W)'F,/kT = D,F,/kT . (5.6)

Note, however, that the field above which this relation is not valid may be much smaller than kT/a in
disordered media [Ric89, Bou89¢].

In higher dimensions, the same conclusion can be reached using, e.g., the method presented in
[Der83b]* The Einstein relation holds whenever detailed balance is obeyed. (This is also true for model
B)

* Type B models (random traps) also obey Einstein’s relation when () is finite. This 1s easily proven
following the lines of section 2.4.1. The thermal average of the component of the position parallel to
the bias reads

E=a(N—>_N<—)’

where N_, and N_ are the number of jumps along the bias and against the bias, respectively.
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N=N_ + N_ 1s related to the time ¢ by
N=t/{r)y, N_IN_=e"*T=1+qaF,/kT .
and thus
R(t)=(t/{7))a’F,/kT=(D,F,/kT)t , (5.7)

where expression (2 36) of the diffusion constant has been used

* Type C (random force) models do not obey Emstemn’s relation n general, except when the random
force 1s constrained to be the gradient of a potential This 1s the conclusion reached n section 4 3 3 on
the basis of a weak-disorder expansion This 1s 1n no way surprising, and holds true in general; only in
the potential case does a current-free equilibrium distribution exust (1 e , if detailed balance holds) and
may a fluctuation—dissipation theorem be proven (see appendix E for a general proof in one dimension
[Fe188]). General results can also be reached when the random force 1s divergenceless, n which case the
arguments of section 4 3 2 2 based on the known (current carrying) equihbrium distribution leads to

R(:) = (D,F,/kT)t, (5.8)

where D 1s the diffusion coefficient in the absence of disorder and not the diffusion coefficient of the
disordered problem for zero bias.

These violations of Einstein’s relation should, however, not be considered as a spectfic effect of
disorder, indeed, 1t also holds true when a weak space dependent (but non-random) force 1s applied to
a Brownian motion on a regular lattice

52 Linear response and ‘“‘generalized Einstein relation™ in the short-nme (high-frequency) regime

We show n this section that, when diffusion 1s anomalous, linear response still applies at small
enough time and that 1n this regime a generahzation of Einstein’s relation holds These remarks also
apply to the case where the external bias has a harmomic time dependence, in the hmit of large
frequencies. The denvation presented below applies for a fixed configuration of disorder provided the
modification due to the bias of the weight of a given trajectory 1s described by a Boltzmann weight,

Pilrder D= P Desp(S - Fy2kT) (59)

(In particular, temperature must be well defined and constant 1n space.) In addition, the local force
(including the external field) must be weak i order to avoid non-linear effects [the expansion
exp(—aF,/kT)=1— aF,/kT must be vald to msure L W, =1+ O(a’) at each sute]

Introducing the length scale £, above which the potential energy gain outweighs the thermal energy
(that 1s, F ¢, = kT), one must have

4

i,

=1

R(t)= <&
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Then it 1s easy to show that

z{,) R, Py({r}) exp(F,- RI2KT)
(., Po({r.}) exp(F, - RI2KT) ro Ry % 5kT 2kT

Ry ()=

(5 10)

[assuming R(?), = 0], where R, denotes the component of R along F,.

This generalization of Einsten’s relation to anomalous diffusion 1s generally vahd only for short
nmes, in a regime where the mean displacement R(f), 1s very small compared to the typical
displacement [R*(t),]'"* (see fig. 51) (More generally, one should be careful that the two hmits F
small and ¢ small can be non-commuting in some situations; (5 10) then applies provided the short-time
regime is taken first, see section 5.4.)

A direct application of the result (5.10) concerns the response of a particle to an external field
oscillating at frequency w. If the field F, 1s such that £2> R}(t=w ') then the displacement will

oscillate with an amplitude A(w) given by 2kTA(w) = F,R}(@ ™ "). The frequency dependent mobility
m(w) will thus scale as [Sch73]

m(0) = wA(w)/F,= oR}(w ") /2kT (5.11)

In particular, if free diffusion is characterized by R_g(t)~ a*(t/t,)*", one will observe [Oht84, Gef83,
G12]
2

m(w) = ﬁﬁ (wr,)" > (5.12)
n the short-time (high-frequency) regime aFy/kT < (w7,)"
5.3. The long-time regime: non-linear response, general rule and exceptions
5.3.1. Analysis a la Pincus

In the long-time limit, the perturbative result R ~ F, can break down, since eventually the energy
gain due to the field 1s much greater than k7. In this case, one may borrow arguments from critical

'P(R)

Fe2Y

R R

Fig 51 Qualitative shape of the diffusion front for a biased walker in the short-time lImut where the generalized linear response (5 5) 1s still valhd,
the width of the probability distribution 1s then much larger than the offset of the mean position
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Fig 52 Pmcus’s blob picture of a walk stretched by an external Fig 53 Veloaity V versus applied force F, in the three cases v > 3,
force For length scales smaller than &, = kT/F the walk 1s almost v=14,v<i

unperturbed

phenomena and especially from polymer physics to obtain a general rule applying when well-identified
conditions are satisfied These arguments rely on the following “blob” picture of the walk (origmally
introduced by Pincus for polymers [Pin76, G16]). At length scales smaller than &., the walk 1s
considered to be unaffected by the field, while for length scales larger than £, the field domnates and
directs the walk along 1its direction. ¢, 1s the crossover length between zero-field behaviour and
infinite-field behaviour (see fig. 5.2).

One may thus write, for R(f), > &,

R(O)F=(t/1)¢; (5 13)

where ¢, 1s the mean time needed for the unperturbed walk to cross the length £, Thus, 1f t, is finite,
one may wrnte (with &, ~¢;)

R(t), ~ 1" ~(F,[kT) ™" (5.14)

which shows that 1n the general case the response 1s non-linear 1n the field F,, except in the case of
normal diffusion, for which (1 —»)/» =1 Only 1n this case are the short- and long-time behaviour of

R(?) - 1dentical (see fig 5 3)

Remarks
(1) Formula (5 14) might have been obtamned by a scaling argument [G16], writing

mr = tzyFof(fr/tV) ,

with f(u)— 1 for u— o, then, demanding that for strong fields R(¢) should be linear i ¢ fixes f(u) ~ u” " for u—>0, and (5 14)
follows
(n) For v = 3, the argument may be made shghtly more precise If &, = (Dyt,)'" then (5 13) reads

R(t)=1tD,¢;' =t D,F,/kT,
so that one recovers Emstein’s relation m = D /kT

(w) Vahdity of the law (514) The arguments leading to (5 14) fal under two circumstances, which are quite often
encountered 1n anomalous diffusion phenomena
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(a) If the unbiased diffusion process 1s anomalous because of a broad distnibution of trapping times, then for x <1, (5 13)
should read

RO e, = (t1t,)" | (5 15)

where ¢, 1s the typical ime needed to cross the distance £, Response in this case will be non-linear both in ime and wn the applied
field, this 1s discussed 1n more detail below, 1n section 5 4 1 This would also be the case for Levy flights and for walks on fractals
(see chapter 6)

(b) The above argument mplicitly assumes that the (connected) correlations m displacements (V(0)-V(x)) are neghgible
beyond £, This may not be the case in hughly correlated media, in the case of the stratified medium constdered 1n section 1 3 2, 1t
1s easy to show that correlations are important up to scale A, = g5/ DF, os Which 1s much larger than ¢, Writing now X(1), = At L

with [see eq (170)] A, =V o, ”D 7"} leads to the expected result X(z), = F,t Said differently, the enhanced diffusion law

corresponds to a scale dependent temperature T(¢) defined as ¢ ~[T(£)¢]""%, and the above arguments apply if A, 1s defined as
Fodp ~ kT(A,)

5.3.2. Non-linear response and the shape of the diffusion front
Yet another (fruitful) way to understand (5.14) [G16] is to write the response equation (5.10),

R, = {dR RP,(R, t) e"o®/*T
F J‘dR PO(R’ t) eFOR/ZkT ’

(5.16)

but instead of expanding the exponential, one looks for the saddle point of (5.16) (since F,R/kT will be
large). Writing

Py(R, )~ "f(RIt"),

—vé

. —ud o .
with f(u) ~e™ for u— », one has to minimize a “free energy”, sum of an “elastic” part, —R%*°, and

an external field part F, R/2kT This leads to R(t); = R qqe ~ £ ® "F;/®™" Imposing now that
R(#)/t has a finite limit for t— oo leads to
6=1/(1-v), (5.17)

and to (5.14). The meaning of the equality (5 17) — which we have already encountered many times — 15
thus clear: the asymptotic shape of the diffusion front is connected to the response of the walk in a
weak external field.

533 Application to the distribution of the magnetization in a ferromagnet
The analysis above appltes to the probability distnibution of the magnetization of a spin model at its critical point (see section
13 4) One can conjecture that it decays asymptotically as

P(M, L) ~exp[~(M/L*Y'], 8=1/(1-), v=(d—2+1n)/2d (5 18)

(This leads, for example, to P(M, L)~ exp(—M'®) for the two-dimensional Isng model') Response to an external field will
correspond to the saddle point of

f dM exp(—M°L~"* — MH), (519)
that 1s,

gy dpg(=»)v
M o0 =LH

S
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This can be transformed as H ~ M°, which 1s the usual non-linear response law at criticality, with the usual relation
S=vil-v)=(d+2-79)/(d-2+n)

The same argument leads to a prediction for the diffusion fronts on fractals, which we shall describe 1n the next chapter
(section 6 2 3)

5 4. Broad distribution of trapping times anomalous drift and violation of hinear response, applicanions
to the electrical properties of disordered materials

541 The effect of long trapping times
The response of type-A models (random traps) to a weak bias 1s studied here, in the case where the
distribution of trapping times 1s broad,

Pr)=1""" (1) (5 20)

In this case, 1t has been shown 1 section 2 4.1 that the unbiased diffusion process 1s anomalous, with
(for u <1)

v=pul2 (d>2), v=ul(l+upn) (d=1) (5.21)

Let us apply a weak external bias, such that aF,/kT <1 The position of the walker 1s related to the
number of jumps N by

R(t), = aNaF,/kT , (5.22)

where, as 1n section 2.4 1,

N,
=1—V1i2 ~ 1 NNU+! (5.23)

In this expression, 7, is a microscopic time, and N, stands for the number of different traps visited by
the walker This number 1s itself affected by the bias, and its thermal average reads (for weak F,)

N, =(aF,/kT)N + C, mf(N“* N), (5 24)

where C, 1s a constant which depends on the lattice type only Again, one has to distinguish between
the two cases d >2 and d <2
- If d >2, one obtains

N,~N > R(@t), ~ (a°F,/kT)(t/,)" (5 25)

Thus the (thermal average of) the position indeed depends hinearly on the bias, but non-linearly on
time. The exponent characterizing this anomalous drift 1s u, and the generalized Einstem relation of
section 5 2 1s indeed satisfied even at large times

—If d=1. one has to compare the two terms mn (5 24)
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* IfaF,/kT < C;N “12 1 ¢, 1if one is interested in the weak-bias limut for large but fixed time, one gets
R(t), ~ F/™/ ) (5 26)

which, as expected, satisfies the “generalized Einstein relation”, eq (5 10)
* In the opposite limit aF/kT > 1, one gets instead

RO, ~ Fir* (527)

which exhibits both a non-linear dependence on the bias and an anomalous drift behaviour The
crossover between these two regimes simply reads

(aF,/kT)(t/m,)*' ™ =1. (5 28)

542 The frequency dependent conductivity of Hollandite
“Hollandite” (K, ;,Mg, ,,Ti, ,,0,,) 1s a one-dimensional 10mc conductor (the charge carrier 1s K™)
As such, it 1s very sensitive to defects and impurities along the chain, which can be modelled as energy
barriers to be crossed by the 1on The model proposed by Bernasconi, Beyeler, Strassler and Alexander
(BBSA) [Ber79] 1s a one-dimensional symmetric hopping model, with local hopping rates
Wn nvl Wn+1,n = WO e_An/kT (5 29)
The “lattice spacing” in this case is the typical distance between impurities a, and W, = D,/a’, where

D, is the “bare” diffusion constant. BBSA propose an exponential distribution for local barrier heights
(T, 1s a charactenstic temperature),

-A/kT
_Je mo A, =A<A
(4= {0 , if not , (5.30)
which nduces a hopping rate distribution (W) =W*" with
p=TIT,_. (531)

As has been argued n chapter 2, this model 1s similar at long times to a trapping model with a local
trapping time distribution () ~ W,(W,7)”' ™. The diffusion law in zero electric field 1s

R*(t), = a*(Wr)**/0*#) (5.32)

When an external a.c field F, of frequency w 1s switched on, the dependence of the mobility m(w) of
the 10n of frequency can be deduced from the above results, by replacing t~' by 1w 1n the above
formulas. The resulting regimes are shown 1n fig. 5 4.

Remarks
* The “phase shift” between current and voltage may be obtained using Kramers—Kromg relations [M1t89] — or more loosely by
replacing 1/¢ by 10 1n the above expressions Its value 1s shown in fig 54
* If the apphed field 1s not small, the behaviour of the position reads
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—1n the short-time limit
R(1), = asih(aF,/kT) (W,t)™
—1n the long-time limit

R(?), = a sh(aF,/kT) [tanh(aF,/kT)]* " (W,)*

(5 33)

The corresponding (non-monotonic) behaviour of the mobility versus the applied field for a given frequency 1s shown n fig 55

kT ho=01-w) & B (& )V
/ kT - Wy
m W~w'2
‘/ Dy =(1-2v) L
W
wo

Fig 54 Frequency dependent mobility m(w) and phase A¢ (be-
tween current and field) i the (w, F) plane exhibiting a non-trivial
crossover ine between two different laws for d <2
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Fig 55 Dependence of the mobility m(w) for a given frequency on
the dimensionless varniable aF/kT according to (5 33)
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Fig 56 Expenmental data for 1omic conductors [Ber79, Bey81] (a)
conductivity (mobility) versus frequency, showing a power law depen-
dence, filled symbols Re o, open symbols -Imea, (b), (c) the
dependence of the exponent on temperature, and the fit (526)
proposed by [Ber79] Note, however, that a purely hnear dependence
on temperature, as (5 27) would predict, 1s not a prior1 excluded
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The complex mobility m(w) has been measured for Hollandite [Ber79, Bey81] and follows quite
accurately a power law,

m(w) = (10)" , (5.34)

with the required [Mit89] phase shift between its imagmary and real components (A¢ = ;7a) The
authors of [Ber79] implicitly assume that the applied field F, is sufficiently small so that the
experimental results may be analyzed within linear response theory, eq. (5.26) The exponent « 1s thus
identified with (1—p)/(1+ ), that is, (T, — T)/(T,+ T) The agreement with experiments at
different temperatures 1s quite good (fig. 5 6) It would, however, be satisfactory to exhibit the
crossover towards the non-linear regime by increasing the applied field, and to see the exponent a
change from (1—u)/(1+pu)to1—pu (1e., 1—-T/T,) In particular, a straight ine going through the
experimental points of [Ber79, Bey81] 1s not a prion ruled out (fig 5 6), which underhnes the need for
more data. The existence of a crossover would furthermore validate the one-dimensional nature of the
problem.

5.4 3 Photoconductivity of amorphous materials

Biased CTRWs with a broad distribution of trapping times have been used to explain anomalous
electrical transport in some amorphous imsulating materials (e.g. As,Se;) (see [Sch75, Pfi78] and
references therein). Figure 5.7a shows a typical experimental set-up in which the transient current I(¢)
through the sample 1s measured. The observed behaviour (fig 5 7b) 1s very different from the one
expected if diffusion followed a biased Gaussian process. Indeed, I(¢) 1s well described by

It)y~t*, t=7(L); It)~t 2, t=7(L),

where the sum of the exponents turns out to be close to —2 Ths 1s well accounted for 1if the charge
carniers are assumed to perform a biased CTRW with a broad waiting time distribution, ¢(7) = poUre),
The first regime corresponds to the motion of the centre of the packet x(t)/t~t*~' For longer times
[x(¢) larger than the sample size|, the current 1s due to the particles which have been trapped for a very
long time, and thus decreases as the first passage time distribution, i.e., t*#) Note that the sum of
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Fig 57 (a) Typical expernimental set-up a potential drop 1s apphed and a light flash creates mobile carners (b) The induced transient current as a
function of time Note the difference with the expected erf function (dot-dashed curve) if diffusion was normal
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the exponents 1s exactly —2 n this model, which also predicts that the crossover time between the two
regimes should scale as 7(L)~ L'"*

55 Strong violaton of linear response. the combined effect of bias and geometric disorder

Particular geometrical structures can induce [Bar83] a highly non-hnear effect when an external field
1s applied Consider, for example, a disorder such that V-shaped obstacles (see fig. 5.8a) or *‘dead”
dangling ends (fig 58b) are created Assume furthermore that the sizes / of those objects are
distributed according to a certain probability distribution p(/) It 1s quite cbvious that the external field
will drive the particle towards the bottom of those “fjords” which will act as traps with release time
t=exp(Fl/kT) (F,/ 1s the typical energy scale inside a fjord of length /). Two cases can then be
distinguished:

(@) p(l) decays more slowly than exponentially with [ In this case, as soon as the field 1s non-zero,
the mean trapping time diverges, leading to a creep (anomalous drift) of the particle, corresponding to
zero mobihty (or more precisely to a time dependent mobihity, vamishing as t—> =) This 1s to be
contrasted with the fact that for a wide class of p(/), the diffusion coefficient 1s fimte when the external
field 1s zero, this 1s one of the exceptional situations alluded to 1n section 5 2 There can of course be
anomalous trapping (even for F, =0) if p(I) 1s decayimng sufficiently slowly, or if fluctuaning local fields
F(r) remain

(b) If p(!) decays exponentially, say as exp(—//l,), then a field-induced dynamical phase transition
will occur for a critical value F, of the bias defined by the divergence of (7) [Bun86]

F. = kTIl,. (5 35)

Thus value separates a flow phase (x = Vt) for F < F_from an anomalous dnft phase F > F_ of the type
encountered 1n chapter 3,

RO, ~1"F (5 36)

For a sample of size L, the resulting current will have the shape depicted n fig. 5.9. Note that in this
case the unbiased diffusion process 1s normal

J 3
A 7 L-oo
e > EgL
i e Fe
F F |
1 >
(3) (b) 3 =
Fig 58 Two schematic instances where geometry combimed with an Fig 59 Current J versus applied force for a sample containing, say,
external bias induces deep traps (a) V-shaped obstacles, (b) dangling dead ends with exponentially distnbuted lengths In this case, a
dead ends or backbends “dynamical” phase transition occurs {Bun86, G12], which 1s rounded

off for a finite-size sample (of length L)
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If p(l) decays faster than exponentially, the mobility will always be finite for an infinite sample,
although 1t may be a decreasing function of the applied field.

5.6. Problems with an average flow: dispersion

We now turn to situations where a fimte (not necessarily weak) velocity 1s imposed. Such situations
are of great practical importance, € g. 1n the physics of porous media in which a packet of tracer
particles is injected at the entry point of the sample and one observes the dispersion At of the exit time
around 1its mean value (fig 5 10). At is related 1n a simple way (see below) to the longitudinal diffusion
constant of the tracer, through

D, =lim U’ Ar’/2x . (5 37)

Theoretically, one asks how the average velocity reflects the microscopic length and time scales or, said
differently, what 1s the information contained in the D, versus U curve [Saf59]? A classic reference on
this subject 1s the compilation of data due to Fried and Combarnous [Fri71], reproduced i fig 5 11

Experimentally, this represents an important and useful tool to characterize the medium; quite a lot of
work has thus been devoted to both aspects (for recent reviews see, e.g., [Koc85, Cha87a, b, Bra88b,
Hul88, Bac89]).

5.6.1 A toy model to understand dispersion laws

An extremely simplified model [Bou88a] allows to discuss 1n an elementary way the different regimes
to be expected 1n such situations. The medium 1s 1dealized as being one-dimensional (fig 5.12), and
made of a “backbone” along which the particle 1s convected with velocity VAt regularly spaced
positions (separated by a distance ¢), the particle can leave the backbone for a while, with probability
p;
—1n one version of the model (fig 5 12a), 1t enters a trap, where 1t stays during a given time 7;

0 t 1 i 1 1 | 1 1 A
' 1 10 102 108 104 Ud/Dp
Fig 510 Typical dispersion experiment A concentration pulse 1s Fig 511 Compilation of experimental results [Fri71] showing the
created at the entry point of a (porous) sample through which a flow 1s dependence of the dispersion coefficient on the flow veloaity U

forced The dispersion of exit imes At 1s then recorded at the other
end of the sample Measurements at intermediate positions mn the
sample may also be performed, e g, by ultrasonic techniques, see
[Bac87]
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Fig 512 Smmple model of dispersion [Bou88a) The particle evolves on the backbone with local veloaity V' Every ¢, it decides erther to carry 1ts
way through, or to enter (a) a trapping region characterized by a release tme 7, or (b} a region of locally siower velocity gV

—1n another version (fig 5 12b), the traps are replaced by regions where the flow 1s locally slower ( 8V,
B<1)

All molecular diffusion effects have been neglected 1n these models, which are only meant to capture
the main effects of dispersion For this reason, a complete analytic solution 1s straightforward We
illustrate the calculations on the trapping model, the translation to slow velocity zones being most
simple

The easiest quantity to compute 1s the probabihity for the particle to reach x at time ¢, knowing 1t was
at x =0 for + =0 (first passage time or “‘residence time” distribution) With the notation N = x/£, one
has

N
P(t,x)= 2, Chp (1 —p)" *8(t — xIV - kr) (5 38)
k=0
since no backsteps are allowed. The Laplace transform of P(¢, x) thus reads
PE,x)=e " 1-p+pe ™))" (539)

Expansion for small E shows that for large ¢ and x, P(t, x) takes the following Gaussian shape:

w(- &0, (5 40

2ox

P(t,x)=

1
c
V2mox

where the average and vanance of the first passage time at x read

t_=x<—1‘;+p£>, o,=r—1 =x%p(l—p) (5.41)

Since backsteps are forbidden (no molecular diffusion), the probability density P(x, ¢) of finding the
particle at x at time ¢ 1s related to P(t, x) by a “conservation” equation,

jP(x, t) dx=fP(t, x)dt. (5 42)

It follows from this equation that P(x, t) also takes a Gaussian asymptotic form,

P(x,t)=(4mD)""" exp{—@\;DﬂHtt)z] : (5 43)
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where the velocity U and longitudinal diffusion constant D, read
U'=v'+prie, Dy=34p(1-p)Urilé. (5.44)

The analogous expressions for the model with low-velocity bypasses (fig. 5.12b) follow immediately by
replacing 7 by (£/V)(a/B — 1) and ¢ by 2¢ in these expressions,

U=V [+ ipa/B-1)], Dy=1ip(l-p)alB—1)(UIV)UE. (5.45)

A commonly used parameter n the physics of porous media 1s the fraction f of the total volume
corresponding to traps (or to slow-velocity bypasses). Assuming the process to be ergodic due to the
underlying molecular diffusion, f should be equal to the fraction of time spent in the traps As a
function of the above parameters, f thus reads

for model (a). f=prU/¢, (5.46)
for model (b): f=3ip(a/B)UIV . (5.47)
Using f as a parameter, the above expressions for the diffusion constant can be cast mnto the form

@ Dy=3fU(1~fE/Ur), (5 48)

(b) Dy =4 fUt(/B)(1 - Bla)’[1—f(1+ Bla)]. (5.49)
Note that molecular diffusion has been neglected, which 1s valid provided:

Pe=V¢/Dy>»1 or Dy> D, (5.50)

These expressions have an important physical content
—If trapping regions play the dominant role, with a well-defined release time (due to molecular
diffusion, i.e , 7= a¥ D), then D, scales like U ’r for sufficiently large velocities; this 1s the case, for
example, 1n chromatographic or filtration processes. This mechanism also plays some role 1 porous
media at intermediate velocities [Mag89].
—If, on the contrary, the velocity nowhere vamshes but low-flow regions dominate (8 <1), then D) is
linear 1 the velocity,

D, =Ul, (5.51)

This 1s the law observed 1n almost all porous media at large velocities (cf fig 5.11); as this toy model
clearly emphasizes, 1t simply follows from the inhomogeneities of the velocity field in the medium
(“geometric dispersion”). As is also clear from (5.51), in the presence of very low velocity channels,
the dispersion length I, = D, /U can be much larger than any “mucroscopic” length (e g. pore size), and
even than the correlation length of the velocity field, since, for small B,

ly=f(1-f)ag/2B>¢ (5.52)

Indeed, large values of /, are often encountered for sintered samples (see, e.g., [Cha87a,b, Bac89]).
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Remark An nteresting generahzation of the above trapping model s when the trapping times are
not all equal, but have some distribution () At each visit of a trap, a value 7 1s chosen according to

that distribution (one has thus a biased CTRW 1n the sense of section 1 2) The above calculations are
easily generalized to that case, since P(t; x) reads

P(t, x) = ﬁu Cyp“(1-p~* f : JH dr, y(7,)8(t = x/V -5 7)), (5 53)
and thus, 1n Laplace transform,

P(E,x)=e """ [L = p+ pi(E)]" ¢ (5 54)
Expressions (5 44) are generalized as follows

U™ =V "+ p(r)e,  Dy=(pU2&)({7*) = p(r)?) (5 55)
In particular, for small p and as a function of the fraction f,

Dy =5fU(7*) /(7). (5 56)
It 1s important to notice that 1t 1s the raro {7°)/(7) which fixes the time scale
562 Anomalous dispersion

56.2.1 Trapping. If the second moment of the trapping time distribution diverges, 1t 1s apparent

from (5 55) that Ax’(¢) grows faster than linearly with time It 1s easy to see that if P(r)~7 " wath
1< u <2 (this case was already encountered n chapter 3), then

X(t) = X0y =1

In this case the diffusion front never becomes Gaussian (it 1s rather a Levy law of index ), and the
apparent D) shows a strong dependence on the size of the sample,

Dy(L)=L*"" (557)

56.2.2. Long-range correlations of the velocity field. Anomalous dispersion can also arise if the
veloaty field 1s strongly correlated [Koc88, 89, G14], 1 e , if

(V(0)-V(r)) - V?=r¢ (5 58)

As the mean velocity U of the particle 1s assumed to be non-zero, the dominant part in the fime
correlation of the velocity 1s obviously

(V(0)-v(1)) ~(Un™, (5 59)

from which the typical displacement Ax around Ut follows, agamn using the methods of chapter 1 (see,
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however, [Dou89al),

1—a/2

t , a<l,
Ax(ty~{tlnt, a=1, (5 60)
Vi, a>1,

resulting 1n a scale dependent dispersion coefficient,
D(L)y~L"". (5.61)

In this case, the diffusion front exhibits two maxima [Koc88, 89] This “scale effect” 1s experimentally
known 1 hydrogeology and o1l recovery, but apparently the mechamsm responsible for it (trapping or
correlations) has not been 1dentified. Analysis of the diffusion fronts, which are very different in the two
cases, should provide useful information

6. Anomalous diffusion on fractal structures and related transport properties

Anomalous diffusion can also arise from the very geometrical structure of the “substrate” on which
the particle 1s evolving: “culs-de-sac” and loops do slow down diffusion. If they are present at all length
scales, they may eventually change the diffusion exponent ». This 15 what happens on fractals and has
been extensively studied since De Gennes’ paper on “‘ants mn labyrinths” [dGe76] A comprehensive
review on this subject by Havlin and Ben Avraham [G12] has recently been published and we refer the
reader to this work for some information and references (see also [JSP84]). For the sake of
completeness, we nevertheless summarize some fundamental aspects of “fractology” and give a few
examples and open problems.

6.1. Fractals: three characteristic dimensions

A fractal 1s characterized by several different dimensions, related to different physical properties Let
us quote three of them.

(a) The fractal (or mass) dimension relates the mass contamned in a sphere to its size ¢,

M, ~ e (6.1)

e—0

For an mnhomogeneous structure one should rather look at the “multifractal spectrum”, associated with
the different moments of the fluctuating mass (see, e.g., [Pal88, Fed88] for a review),

(MR~ g (6.2)

dg 15 not an mtrinsic [Van84] property of the fractal but rather describes how the object 1s embedded mn
the outer space For example, a straight line has a “fractal” dimension dg =1, but if 1t is folded so as to
give, e.g., a self-avoiding walk in two dimensions 1t becomes a fractal object of dimension di, = 4/3 (see,
however, [Kou89]).

(b) The spectral dimension [Ale82, Ram83] can be defined, for example, through the mean volume
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occupied by a diffusing dye droplet imtially concentrated on a given site After a long time f, this
volume grows by definition as

Vs(r)~ 5 (63)

Thus volume 1s clearly invariant under a fractal deformation, dg 1s an intrinsic property of the fractal For
the example considered above V (t)~t'’* and thus ds =1 whatever the overall shape of the line on
which the particle diffuses.

Alternatively, one could consider the probability of presence at the nitial site after a time ¢; this will
decay as

PO, )~V ' ~1%? (64)

As was set out 1n detail in chapter 2, P(0, r) 1s the Laplace transform of the density of states of the
Laplacian operator on the structure The low-energy density of states thus behaves as

p(E) ~ E™* (65)
The typical distance R(¢) travelled by the particle in a time ¢ 1s obtamed as

Vi(t) ~ R()F = R(t) ~ %% (6 6)
One may thus define an effective, scale dependent diffusion constant,

D(&)=¢""", v=dy2d, (67)
The probabilty distribution P(R, t) 1s expected to obey a CLT at long time,

P(R, 1) = [V5()] 'f(RI?"). (6 8)

The asymptotic behaviour of f(x) for large x 1s, as usual,

8

f(x)x:wx" e " (69)

The value of 6 1s discussed below (section 6.3.1)

Note that the problem of a random walker (for which the weight of one walk is determined step after
step) on a fractal does not define the same statistical measure as the “ideal polymer” problem [Mar89]
(for which the weight 1s determined globally [G16]) This remark also holds in Euclidean space for a
walk n a potential V(R) (#E - R).

(c) The spreading (or chemical) dimension (see, e.g., [JSP84, Sta84]) 1s related to the total volume
accessible to ¢ steps (fully “stretched”) walks,

Vet (6.10)

d 1s an mtrinsic property of the structure (d =1 for the straight line). The maximal distance (in the
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embedding space) R_, (¢) travelled by the walker is thus given by

[Rua D] =V > Ry (t)~ 1'% (6.11)

Obviously, this means that d <d,, whatever the structure. The “tortuosity” of the fractal thus
considerably slows down the walker, who, although walking ‘“‘straight” in his own space, appears half
drunk from the outside! The same argument also leads to the minimal time required to cross a given
distance R,

t~R%? (6.12)

(d) Bounds. We have already mentioned the obvious mnequality d= dg. One can also show that
dg< d, which can be understood as follows: Consider two pomnts A, B separated by a distance R; 1solate
the minimal path linking those two points along the fractal (this path is R long) and delete all links
not belonging to this shortest path. Diffusion 1s thus speeded up on this restricted linear structure, on
which s(f) behaves as t''? (s 1s the arc length). The time ¢,5 needed to reach B starting on A on the full
fractal will hence be longer than s° = R¥4 ¢ o5 ~ R2F'% then yields dg =< d. Thus

dy=d=d, (6.13)
6.2. Diffusion-related transport properties of fractals

Many properties of general fractals are shared by the simple “folded chain” structure (for example, a
random walk of N steps). If the current (or the walker, the phonon, etc.) cannot cross contact points,
the structure is really mternally one dimensional and thus d = dg =1, while for the example of a
random walk d.=2. We thus illustrate three important transport properties of fractals on this
transparent “toy”” model; as we shall see, some of them are quite interesting (see 1n particular section
6.2.2, which contains new results).

6.2.1 Electrical properties of fractals
Combination of the general theorem on resistor network [chapter 2, eq. (2.15)] and of eq (6.7)
allows one to argue that the d.c. conductivity of a fractal network is scale dependent and behaves as

a(§)~¢" (6.14)

The resistance & between two points A, B separated by a distance ¢ is obtained by arguing further that
the current distribution extends over a “volume” £°F made of £F~" “channels” of length £ 1n parallel
(see fig. 6.1). The resistance %&(¢) thus scales as

R(E)~ E1[ET o (£)]~ €7 (6.15)
For the example of a “folded chain”, » = 1/2d; and R(¢)~ £ ~ s: the end to end resistance of a hnear

structure 1s obviously proportional to the number of links. The problem becomes far more interesting 1f
one lets the current flow through (quasi-) contact points. One must then distinguish two cases:
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- ‘o

g

Fig 6 1 The paths contributing to the conductance between two pomnts A and B which are £ apart lie within a volume ¢, hence there are =¢* '
channels of length =¢ in parallel

(a) The fraction f of links belonging to no loops (1.e., the number of “hot” bonds carrying all the
mput current) 1s fimute. In this case, only the prefactor of (6.15) changes, but the exponent remains
equal to d,

(b) This fraction f 1s equal to zero. Cross-links i this case may deeply affect the topological nature
of the cham and thus change the spectral dimension to dg>1 This would correspond to an enhanced
diffusion along the structure, and an end to end resistance growing as R(¢)~s”“™' <s Numerical
experiments have been performed for random walks 1n three [Mov88] dimensions, indeed suggesting
dy(d =3) =1 14 (for the same problem 1n d =2, see [Man89]) A value of d, for self-avoiding chains 1in
two and three dimensions with cross-links was proposed 1n [Bou87d], assuming f = 0. In this case d was
related to the statistics of large loops within a polymer [dCI80] Recent numerical work on SAWs
[Sen88, Yan90, Bar90], however, seems to indicate that f is non-zero. A detailed study of the
distribution of f would be highly interesting: does 1t peak for infinite chains?

6.2.2 Buased diffusion on fractals: linear and non-linear response

6221 Static field. According to the general discussion of chapter 5, in the short-time regime (where
R(t) < kT/F,) the response of the walker 1s linear in the applied field (see also [Oht84], where this
result was obtamned for the percolation cluster),

R(t), = (F,/kT)t*" (6.16)
The crossover time 1s thus
t*=(kT/F,)""” (6 17)

For longer times, the diffusion behaviour 1s strongly dependent on the structure and anisotropy of the
fractal Take any configuration of the folded chain that we consider, provided 1t 1s globally sotropic
(that 1s, the mean value of the curve’s tangent 1s zero, ({(dr/ds) = 0), and assume that the external field
1s directed along z To reach a point B characterized by an abscissa zg, the particle will typically have to
go through points on the chain of abscissa of order —z,. The potential barrier that the particle has to
cross 18 hence of order F,z;, and this will take a time

t~t* exp(Fyzy/kT) (6 18)

The typical distance spanned by the particle 1s thus [Bar83]

R@) ~ 2() ~ (KT/F,) In(t/t*) (6.19)
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Fig 62 Time dependence of the average position of a biased walker on an 1sotropic structure, for long times, the fact that energy barriers of height
=FR must be crossed induces a loganthmic progression of the walker [Rom88, G12, Rou87a]

(fig. 6.2) independently of, e g, the fractal dimension of the structure. This result was obtamned
[Rom88] through a somewhat more involved analysis. If the structure 1s a simple random walk R(s)
characterized by

(0R/3s)=V,, (0R/dsdR/ds'),=D,dé(s—s'), (6.20)

then the problem at hand is equivalent to the one-dimensional random force model considered 1n
chapter 3; indeed, one has V(s) = F, - R(s) and hence, the local force along the structure (defined as
f(s)=—aV/as = —F,-dR/ds) has a Gaussian distribution characterized by

(f)=F,-Vo=FV,cos 8, (f(s)f(s’))c=F3D08(s—s’) (6.21)

The walker will thus evolve according to the laws derived 1n chapter 3. In particular, the parameter u 1s
equal to

2kTF\V,cos 0 kT
/.L———ng);——mcosa, (622)
where [, = D /2V, 1s the “diffusion length” of the structure. For u <1, the particle will thus evolve as
R(t) ~ t*, since s ~ t*. Note that the stronger the field the weaker 1s u, and thus the slower 1s the drift
motion!

More generally, if the fractal is such that the minimum of the potential barrier over all paths joining
A to B grows as F,R* (« =1), the resulting diffusion behaviour will be

R(@®)~(Int)"' (6 23)

The ‘“‘skewness exponent” a can be less than one 1f the fractal 1s anisotropic and/or if the “minimal
paths” are sufficiently “straight” (for example, on the Sierpinsky gasket). Numerical simulations
suggest @ =1 for percolation clusters [Hav86, G12, Bun87]. The picture developed in section 6.3.3
indeed leads to a =1.
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6.22.2. The firute-frequency case [Bou90]. We have learned from the above example that the
dramatic effect of a static field on a random structure 1s to create high effective potential barriers, which
considerably slow down the progression of the particle This effect 1s felt by the particle for times longer
than ¢* If the external field oscillates at a frequency such that @ ~' < *, the trapping mechamism cannot
operate and linear response theory 1s correct: the amplitude of motion n a field F(t) = F, sin(wt) 1s
simply obtained as A(w)~ Fyw >*, for w” > F, [Oht84] For lower frequencies (longer times) two
lapses of time can clearly be distinguished during each period.

An “active” phase, when the field F(t) 1s small, for which the law (6 16) 1s vahd,

R(@0), ~[F(t)/kT)* |
or, with F(t) ~ F, wt,
R(t), ~ (F)/kT)wt'"? (6 24)
This is consistent until F(¢)R(¢), 1s of order kT, that is,
Fyot!""” ~ kT (6.25)
“A passwve” phase, m which the field becomes too strong and the particle 1s effectively trapped n
“backbends” and essentially does not move (in fact it does progress logarithmically). This phase takes
place for times ¢, <t <2w/w —t,.
The maximal displacement 1s thus entirely built up during the active phase [0, ¢,], and therefore reads
A(w)=R(t=1,), ~ (F/kT)wt,"
or, using (6 25),
A(w) = (kT/F,w)”" " (6.26)
(for @ <t*”, which corresponds to ¢, <t*). Note that again the amplitude decreases with Increasing

field. For a given frequency, the low-field (6.16) and strong-field (6.26) regimes can be summarized by a
scaling expression,

A(w, F)) = (F)/kT)w *f(F,/F*), (6 27)
with

Fr=w",

foo—=1,  fO—2x", a=(1+20)/(1+v) (6.28)

Harder et al [Har86] have numencally investigated this problem on the two-dimensional percolation
cluster, for which »=0.35. They find precisely the scaling form (6.27) with F*~ ">, while they
estimate a =1.5. Our prediction for a 15 @ =2(d; + dg)/(2d + dg) =1.26 (see fig. 6 3) This agrees
quite well with their results.
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Fig 63 Biased motion on the percolation cluster numerical results of [Har86| for various values of tne trequency, rescaled according to (6 27)
A(w)@”IF versus Fo ™" The asymptotic behaviour of the scaling function, as predicted by our formula (6 28), 1s shown by the sohd hne

For the “walk on a random walk” example (which should be much easier to study numerically) we
expect

Fr=0'"", a=6/5. (6.29)

Ths subtle interplay between trapping and finite-frequency effects may serve as a toy model for pulsed
electrophoresis of long molecules in gels, where anomalous effects are known to appear [Noo87]. Of
course, the point particle studied here does not possess the internal degrees of freedom of a long
macromolecule which are thought to play an important role in the later process [V1088, Deu89, and
references therein].

6.2.3. Diffusion front and localization on fractals
6.2.3.1. The shape of the diffusion front. The diffusion front on a disordered fractal may be discussed
most clearly on the random chain structure that we cherish. Indeed, P(s,f) is simply a Gaussian,

P(s,t)~¢"'"? e"z“, and so is P(R, s). One may thus compute the average diffusion front (in real space)
as

(P(R, 1)) = f ds P(s, t)P(R, s) , (6.30)
which, upon a saddle point approximation, yields in the regime R > M

(P(R, 1)) ~exp[-(R/t"*)**] (R*)~""°. (6.31)

The exponents appearing in (6.9) are thus given here by

5, = = . o=-d3. (6.32)

The typical diffusion front (obtained without averaging over starting pomts, or else as exp({In P(R, 1))),
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however, 1s obtained as
(nPR,1))y=2" f ft— e ®" ds =Rt (6 33)

The exponent &, 1s now equal to 4 instead of 4/3 This shows the importance of correctly specifying
the averaging procedure and the quantities of physical interest in disordered systems. More generally,
Harris and Aharony have recently shown [Har87] (see also ref [G12] and references therein) that on a
general fractal

8. =2d./(2d, — dy) . (6.34)

average

while

8, =2d:/(2d - dy) . (6.35)

typical

(The above example 1s such that d, =2, d=d =1.) In particular, smce d < dg, one has 8, =§,, In
the next section we shall present a simple physical derivation of (6.34) and (6 35). Present numerical
simulations [G12, Yak89] seem not to agree with (6 35). We suggest, however, that, in order to test the
rehiability of numerical investigations of very rare event effects such as (6 9), one should deal first with
the simpler random chain structure (6 32), (6 33)

6322 Localization of waves The above probability distribution and the structure of a localized wave on the structure are
two facets of the same problem, 1 e , the Laplacian on a fractal space Imagne that the eigenstate y.(R) of this Laplacian for an
energy £ decays asymptotically as

¥e(R) ~ exp{~[R/ME)]"} (6 36)
The exponents n and & are related to each other by
§=1/(n"—») (637)

This relation has been obtamed by Levy and Sowllard [Lev87], and can be recovered as follows Usmg eq (3 107) one can
express P(R. 1) as

P(R, t)~fp(E)efE‘¢E(0)lle(R)dE
Assuming that A(E) behaves as a power law for small E, and performing a saddle pont integration, one obtans
ME)~E™", (6 38)
P(R, ) ~exp[—(R/"Y' ™)) (6 39)
Equation (6 39) 1s the announced result (6 37), and (6 38) simply expresses the fact that

E

ME) = f p(e)de ~ E*? ~1/[ME)]F,

0

1 e , that the number of states per sute 1s fimte Combining (6 37) and (6 34), (6 35), one finds that the average behaviour of the
wave function 1s

(Ge(R)) ~e ™. (6 40)
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while the typical wave function 1s “superlocalized” (that 1s, decays faster than exponentially),
$,,(R) ~ exp[—(RIN) ‘]| ~ e 70, (6 41)
which has an obvious meaning the wave functions are exponentially locahized along the structure

Again, (6 40) and (6 41) are easy to obtam for the hinear chain structure Assume that, e g , an attractive impurity is placed at
the ongin Then the bound states will decay (along the chan) as

Pls)~e "
Now, n real space,

_Jds PR, s)Y(s) ¢
W(R))_WNC .

while

_ Jds (s/5,)P(R, 5)

(ln 'I’(R»: _[dSP(R, ) ~-R*

624 Response 10 a constant internal bias [Bou89b]
Let us consider here the response of a particle diffusing on a fractal to a constant “internal field” (1 e , such that the potential
energy drops as — F;s) Generalizing somewhat eq (6 33), one may write

(In P(R, 1)) = J‘ ds P(R, s){In P(s, 1)) ~ —fds (s/t'Y°P(R, s),
where 9 1s the mternal diffusion exponent (defined by s ~¢”) and P(R, s5) reads [G12]
P(R, 5)~ (s"*)“f(R/s"*)
This yields
(In P(R, 1)) = (R4 Y= —(R/t")ooe |
or
dev=1d, (6 42)
8=(dld.)s

yp

=2d/(2d - d)=1/(1- p) (6 43)
This provides another denvation of (6 35) [Bou89b] Formula (6 43) has indeed the expected shape n nternal space, which
msures “linear response” to a constant “internal field” The arguments of section 5 3 lead 1n this case to the following equation of
motion

5~ tF;lvu)/u~ tF(z]a/dS—l

or

RO~ 1"F:, a=(2d-dy)dldd, (6 44)

6.3. The percolation problem: crossover from fractal to Euclidean behaviour

6.3.1. Percolation: a short toolguide [Sta85]
Let us consider a random walker on a disordered lattice, where the hopping rates W, ., =W, can

be either 0 or W. Bond percolation assumes that this choice is independently made on each bond, and
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D(p)
D°=32 W

(p-po)t

Pe Top
r1g 64 Dependence of the average diffusion constant D( p) on the concentration i the percolation problem As soon as an infinite cluster 1§
formed, diffusion 1s possible and D( p) grows as (p — p,)' for p — p, sufficiently small

that W, ,,, =W with probability p and 0 with probabiity 1—p Site percolation is generated by

deciding if a given site is “occupied” (0§ =1) with probability p or “empty” (6 =0) with probability
1-p; then W, ., =0(n)0(n + [)W. The diffusion constant D( p), defined as

n

... 1 d 2
D= lim 577 & 2 [RO) - B[
1s non-zero only 1f the system “‘percolates”, 1.e , when an infinite cluster spans the whole sample. This
happens when p 1s larger than a certain threshold p_, the value of which depends on the type of
percolation (bond or site), lattice and dimension The D( p) curve has a typical “critical phenomenon”

shape (fig 6 4), growing as

D(p)~(p-p.), forp>p, (6 45)

Right at threshold, the mnfinite cluster is a fractal, characterized by dimensions dg, dg and d, which
depend only on the dimension of space d (table 6.1). The fraction P_( p) of present sites belonging to

Table 6 1
Exponents and charactenistic dimenstons for percolation Most
of them have been taken from ref [G12], where error bars
and appropnate references can be found

d=2 d=3 d=6

v, 43 088 172
di 91/48 251 4
dld, 088 0725 2
dy 13 132 4/3
backbone dp 162 174 2
dg 120 - 1
w=2/d,—1 054 0515 172
pdy/u®d2 (num ) 09 - 1
loa =(d = 2)p, +1 1 188 3
t ) 13 202 3
Lo = Vp(d — 2+ dild) 151 207 3
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Fractal

Fig 6 5 Schematic structure of the percolation cluster For all physical phenomena taking place at length scales smaller than £, this cluster appears
as an infimte fractal, while for length scales larger than £ 1t appears as a weakly disordered lattice of mesh size £, one 1s dniven to the homogeneous
fixed pomnt p =1

the infinite cluster grows as

P.(p)~(p-p.)" . (6.46)

A length scale ¢ appears (the correlation length), which separates “fractal behaviour” (for all
processes taking place at length scales r < ¢) from “Euclidean behaviour” for r> ¢ (fig. 65) As
p— p., £ diverges like (p — p.) . An example of how to use such a simplifed picture of the structure 1s
the following: At short times, the medium seen by a diffusing particle has a fractal structure and thus
the particle evolves as

R~t" with v=d/2d..

This 1s vahd until R is of order £. For longer times, the particle sees an effectively Euclidean lattice of
lattice size £. Each cell acts as a “trap” with release time f,, such that { = ;. Hence for t>1¢,, the
particle diffuses normally, with a diffusion constant

D (&)~ &M, ~ €71 (6.47)

D_(¢) characterizes the motion of a particle starting on the infinite cluster, independently of this starting
point Hence

D(p)=lhm -2%, @2 2 [R() - R,)*=P.D.+(1-P,)0 (6.48)

[—)

(since the particles starting on a finite cluster will not contribute to the average diffusion coefficient).
Thus, using (6.45) and (6.47), one obtains [dGe76, Ale82]

t=B+y(1/v-2). (6.49)

Percolation is thus the archetype of a “connectedness” transition, separating a connected phase - in
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which physical excitations can be transmitted from one end of the sample to the other (mass or
electrical current, mechanical stress, “forest fires”, viruses, information, etc ) — from a disconnected
phase As such, it defines a umversality class through which a large number of systems may be
described (see, e.g , [Sta85, Rou89]) As we emphasized 1n the first chapter, two mechamisms may
change the universality class of usual (bond or site) percolation

(a) Strong correlation between the basic units (e.g attraction), which do not occupy sites indepen-
dently If those correlations are “‘sufficiently strong”, not only the percolation threshold changes but
also the critical exponents

(b) Broad distributions, for example of hoppimng rates: If one chooses W,

pS(W) + (1 - p)p(W),

PW) W m=1,

, with probability

then the local mean “trapping time” (1/W) diverges and one expects deep changes n the value of the
exponents ¢, v

This model has been introduced by Halperin, Feng and Sen [Hal85a] to retain the important features
of “continuum percolation”, such as the *““Swiss cheese model”’, where one drills holes at random 1n a
continuous medium Narrow “bottlenecks’ such as the one represented 1n fig 6.6 will correspond to a
high local resistivity, 1.e , a low local transition rate Indeed, such a broad disorder affects the value of
t: 1t has recently been shown [Mac88, Dou88], that, for u <1,

t =max{ty, (d - 2)y, + p '},
where ¢, 1s the “pure” percolation exponent.

6 3.2. Electrical properties of the percolation cluster

6.32 1. d.c properties From the general theorem of chapter 2 and the above discussion, we
immediately know how the conductivity grows when p crosses p.. Indeed, from (2.15), the d.c.
conductivity o 18 identical to D 1if the local hopping rates are chosen as W, ., = (a”/C)o, ,,, Hence

D=o~(p-p). t=B+y(llv-2),
or, mntroducing dp. = d — B/v, and v = d¢/2d,,

tly, = d~dy, +2d,/ds ~2 (6 50)

Fig 6 6 Narrow “bottleneck™ through which current must pass near the continuous percolation threshold The possible dependence of the local
“conductivity” on the width & may induce a broad distribution of waiting times and hence change the umversality class of percolation [Hal84,
MacB8]
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A very important lower bound on ¢ can be found using the exact result on “red bonds” derived by
Comiglio [Con81]. He found that the number of links carrying all the current (“hot bonds”) 1s, per
“cell” of size ¢ (see fig. 6 5),

No=(p-p)". (6 51)
Setting the resistance of all other bonds equal to zero, one finds an upper bound on the conductivity, as

R(E)=L""‘07'(&)>(£IL)(LIE)N, ,
(6 52)
or a(£)<ETNY or t1>(d-2)y +1

(which 1n fact 1s exact in dimension 6, the upper critical dimension for percolation)
An analogous argument allows one to give also an upper bound (of geometrical origin) on ¢ [P1k81],

t<(d -2y, + v d./d, (6 53)

which has the following interpretation: Single out the shortest path spanning the distance ¢, and set all
other resistances to infinity. One thus obviously has

R(E)<(E1L)T7S, ,
or, with S‘g ~ §d*‘",
O'(E) > §2—d—dF/3 ,

which yields the above result on . Bounds (6.52) and (6 53) are quite narrow, as can be seen from table
6.1. In particular, they comcide for d > 6. Note that (6.53) may also be written as d < dy/(2 — d) [see
the remark after eq. (6.59) below]

It is fairly obvious that on the percolation cluster one should distinguish links which participate n
(electrical) transport, and links which do not (dead ends) Removing all those “cold” bonds generates a
new object, the “backbone”, which has its own characteristic dimensions di, do, d°® As the
conductivity obviously remains unchanged, one has the relation [see eq. (6.50)] [Sta84]

d.(2/ds-1)=dp(2/ds — 1) (6 54)

(which 1s not very well satisfied by numerical results, see table 6.1) Said differently, the average
diffusion coefficient D is unaffected, while the diffusion coefficient for particles restricted to the
backbone 1s enhanced ~ since the delays induced by the dead ends are removed. One has precisely

DE=(P/PY)D,, (6 55)

where P2 (<P,) 1s the probability of being on the backbone. Equation (6 55) has a simple meaning:
Wnting D, = ¢ 2/t§, one finds ¢, ~ P,. Since the process 1s ergodic, the walk spends, m each region of
space, a time proportional to the number of accessible sites 1n this region.
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Note that the shortest path between two far away points must belong to the backbone, and hence
7 B/ A A
S~ &%~ ¢ > g /d=dpid (6.56)

6.322 ac properties. The ac properties of the percolation clusters call for a few clanfying
comments, which echo those formulated 1n section 2.2.1 on the “electrical Einstein relation”. First, one
must clearly distinguish

(1) the problem of a random walker on the structure, driven by an oscillating external field, which 1s
dealt with in section 6.2.2, 6 3 4 and 5.2, from

() the problem of the a.c. conductivity — generally implicitly defined through the input impedance —
of an electrical network
The latter problem must then be further specified, since for non-zero frequencies capacitance effects
come mto play [Con89, Cle90]

Hence, one may, for example, consider two completely different physical situations

(1) Each bond carries either a resistor with probability p or a capacitance with probability 1 — p. This
1s a standard model for a metal-insulator mixture. In this case, it 1s known [Efr76, Dao88, and
references therein] that the macroscopic a.c. properties near p_ are related not only to the exponent ¢
mtroduced above, but also to the exponent s describing the divergence of the conductivity of a
conductor-superconductor mixture (1.¢., a percolation network mn which each mussing bond 1s consid-
ered to be of zero resistance),

o~(p—p)
In particular, the high-frequency behaviour of o(w) near p_1s given by

0'((0) _ c!)l/(s+t)

(=0""* n three dimensions) This behaviour has been experimentally confirmed on three-dimensional
metal/msulator mixtures [Nik87]

(1) A second situation of interest may be the following: Missing bonds have zero capacitance but
each node 1s connected fo the ground by a finite capacitance The random walk analogy (section 2.2.1)
may be used to estimate the penetration depth L (o) of the alternating mput current mn the sample. In a
time w ', the particle 1n the diffusion problem probes a region of depth L (w)~ @ " The admittance

A, (o) thus becomes independent of the total depth L of the sample, and can be obtamned through

A@)= 22020 f )~ 3L e,
f(x)_x'_)_o) 1 , f(x)x:th/vp+1

(3 1s the surface of the electrode) Hence,
Ap(w)=30"""D  for L <L.

This result has been obtained in shightly different terms by Rigord and Hulin [Rig88], and checked
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experimentally on a model system. Note that it does not comncide with the extension to non-zero
frequency of Einstemn’s relation proposed by Gefen, Aharony and Alexander [Gef83], which leads to

A, (0)~ o(w) ~ P_(0)D(0) ~ 00! ™%
For more work on this subject, we refer the reader to [Con89, Cle90] and references therein.

6.3.3 Dead ends as deep traps: diffusion on the percolation cluster for d> 6

The mechanism leading to anomalous diffusion on the percolation cluster can be very clearly
identified in high dimensions, where the geometrical structure of the cluster is fairly simple. Indeed, in
“sufficiently high” dimensions, the steric constramnts are asymptotically irrelevant and hence the
percolation cluster can be thought of as a backbone (which is a linear random walk, d? =2 4d%=1,
de =1) with a finite density of dead ends branching out. As the structure is statistically self-similar,
those dead ends are themselves random walks with branches, and so on. It is easy to show (working,
e.g., on the Bethe lattice [Sta85]) that the fractal dimension of the percolation cluster 1s d, = 4 for d > 6
(when d.+ d} =4+2 becomes larger than d, that is, when d <6, the structure and intersections
between the dead ends and the backbone cannot be so simple)

From eqs. (6 54)-(6.56) one thus readily obtains

d=2, dy=4/3, (6.57)

and hence R* ~ t''* in high dimensions The value dg = 4/3 has been conjectured (on a numerical basis)
to be “superuniversal”’ by Alexander and Orbach [Ale82], i.e., independent of the dimension.
¢-expansion (& =6— d) [Har84, Wan86] and very precise numerical simulations for d =2 [Nor88],
however, seem to rule out this conjecture.

We would like to show how (6.57) may be recovered in a way which underlines (i) the basic
mechanism responsible for this slow diffusion, that 1s, trapping in the dead ends, and (ii) the connection
between the value of dg and purely geometric features It would be interesting to find a generalization
to d <6 of the following arguments.

The idea is to model the structure as a random comb with a “crumpled” backbone. The spikes of this
comb are in fact clusters containing n sites with probability y(r). It 1s easy to show that, as the
intersection with the backbone can be anywhere in the cluster, ¥(n)~n'"", where 7 is the cluster
distribution exponent in Stauffer’s [Sta79] notation (7 =5/2 for d >6). Hence y(n) decays as n- )
with u =1/2

The problem of a random walk between “traps” (spikes) of fluctuating size is not trivial since 1t a
priori combines a quenched aspect (the particle visiting twice a given spike sees twice the same
environment) and an annealed aspect, since the exit time of a given region of space is distributed — due
to thermal disorder. A “mean field” approach would consist 1n neglecting the quenched aspect and to
use the effective trapping time distribution (¢) to obtain the diffusion law much as in chapter 2. ¢(¢) is
obtained as

w0 = [ anwim)P, ),

where P, () is the probabulity of first return to the starting point, related to the probability of presence
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P, on this site For Laplace transforms (appendix A) P (E)=1- P,(E) " Hence

P()~t 7 (r<p),  P()~0 (1"*>n),

m (6.58)
> 1/1([) = J friRm2, () dn ~ IWIHHMF(“‘I)]

12dp

v 1s the exponent we are in fact looking for, since 1t also governs diffusion in the dead ends (the
structure 1s self-simuilar)
The number of “traps”, N(s), encountered along the backbone must be such that

Nes) Nmax{N(s))

ndn
Sn=Ne) | Bty

so that the correct number of sites in a sphere of size s%'% 15 recovered Hence N(s) ~ s* d This, 1n
particular, imposes that ud < 1; for d =6, one has ud =1 The ime needed to travel a distance s along
the (one-dimensional) backbone 1s given by [cf. eq (6 58)]

o~ [N(s)]l/[1+vdF(;L~l)]

didg __ dg

And since R~s 1> one finally obtains

dg=2/(1+ p) (6.59)

for any d, d;. In particular, for d >6, w =} and one indeed recovers dy=4/3 Table 6.1 shows that
=1 1n all dimensions

Remarks .
(a) Note that du <1, together with (6 59), 1s equivalent to (6 53)
(b) This picture suggests that for p = p_ and i the presence of a static field,

R()~ (Ing)"

with a =1 Indeed, the local trapping time 1s 1n this case expected to be
t=exp(F,an"' " kT)

Hence, the distribution

1
W)~ o %
Using arguments of [Hav86, Bun87, G12], one finally obtains
(In )*F ~ N(s)~s*' or R~Int
(c) One may wonder whether the preceding “annealed” analysis 1s exact or not An analogous model (with purely

one-dimensional spikes) was considered in [Hav87], and numerical simulations are n very good agreement with the annealed
prediction We strongly behieve that this analysis 1s exact, as the same result may be reached through the following argument
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Assume that the longest trapping time encountered m N steps 1s ¢
— totally explored clusters, such that £2%% > n,

max

— partially explored clusters, such that £2%F < n

max 172

As the particle makes a one-dimenstonal random walk along the backbone, the number of different spikes encountered 1s N7,
each of which 1s vissted N''* times Out of those N> only

(N) Clusters must be divided 1n classes

max

x

d
VR [ VR

1+p max
n

vdp

‘max

are partially explored and thus effectvely ifinite (the quenched aspect, related to the finite size of those spikes, 1s thus irrelevant
for those spikes) The particle visits

N = NVINVYmrde

max

~(2-vdg)

times mfinite traps with a release time distnbution ¢ The longest trapping time 1s therefore (cf ch 1)

Loy = N7 (for 1 - vd; 1)

Hence

t1+vdF(F-‘l)=N, =t

max

s~VN,

max °

which gives back the above result Note that the totally explored clusters get hold of the particle during a time (n,,,, = 179

"max

=N j ndnn ",

since they each act as a trap of mean release time proportional to n Therefore, ¢, 15 also of order ¢,

The results of this section are thus as follows:

(a) We have shown that an annealed approach to the “random comb” problem is essentially exact,
thereby confirming the numerical simulations of ref. [G12].

(b) The diffusion exponent on the percolation cluster for d > 6 1s related (through the trapping of
the particle in deep dead ends) to geometrical characteristics of the structure. It would be nice to relate
(if at all possible) — in the same spirit but in lower dimensions — the spectral dimension to other, mainly
static exponents.

6.3.4. Biased diffusion and dispersion on the percolation network

6.3.4.1. Uniform (oscilating) external field. The analysis presented i section 6 2.2 must be adapted
to the percolation problem since for p > p,_ diffusion becomes normal for R > £. It 1s fairly easy [Bou90]
to determme the behaviour of the amplitude of motion A(w, F,) in the whole (w, F,) (frequency, field
amplitude) plane for non-zero frequencies (for w =0, see [Rou87a]); see fig 6.7. Note that A(w, F;) 18
always a decreasing function of F, for large F,

6.3.4.2. Pressure (or voltage) drop across the sample (*““internal bias’). Suppose now that a pressure
drop AIl s applied at the boundaries of, say, a non-wettable porous medtum n which a hquid has been
mnjected with a pressure shghtly larger than the break-through pressure (AIL) [dGe78]. The nvading
fluid has the structure of a percolation network It obeys an effective Darcy law for length scales larger
than £, in which the permeability is the strict analogue of the electrical conductwity (e.g. [Guy87]),

PU=k(£)VII, (6.60)
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Fig 67 Full “phase diagram” [Bou90] for biased diffusion on the percolation cluster, i the (w, F,) plane, for finte ¢ The laws govern the
“velocity” V(w) = wR(w) Note that V 1s always a decreasing function of F, for large forces Solid lines are crossover lines The velocity V is related
to the amplitude of motion A(w, Fy) through V=w0A

with (&)~ (p — p.)" This is vahd for |VII|/AII~ L™ ' < ¢7', 1.e , for samples with size much larger
than ¢ For L ~ ¢, the time t, needed to cross the fractal network must clearly be ntrinsic, i.e. mvariant
under “fractal deformation”. But

S S X
U W] T P

t \zi{nm

Now, under a fractal deformation, the pressure drop AII 1s obviously unchanged, but not the pressure
gradient; and indeed (replacing VII by AII/£), one has

t ~ LN (6 61)

which 1s intrinsic since ¢°F is the (conserved) mass, and dg is ntrnsic.

If a dye 1s mjected in the flowing fluid, one may observe dispersion due to trapping in the dead ends,
and thus define a dispersion constant D (U, ¢) This problem was first studied by De Gennes [dGe83],
his result can be recovered very easily through the simple model presented m section 5.7 and the
associated formula (5.56),

D||(U, £)= %fU2<7'2>/<T>

(f 15 the volume fraction of “traps™, which 1s 1 for the percolation problem, since most sites belong to
dead ends, df <d,) (7°) and (7) can be computed using (6.58) as the distribution of waiting times,
cut off above ¢, = ¢'", and with an exponent 4 =1/2. One finds (7°) ~ £'"*(r) (this 1s, however,
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not true for arbitrary u!). Finally
D, ~U", (6.62)

with U given by (6.60). In this formula, U is the average velocity and not the velocity of the flow on the
backbone, as emphasized by De Gennes [dGe83].

Remarks

(a) The time £%D, =(£/UY¢ ™" = £ AII"* 15 nvanant under a fractal deformation keeping AIT fixed - contrary to a
worry expressed by Vanmmenus [Van84]

(b) Ths problem has been quite carefully investigated numernically (in two dimensions) and the law (6 62) 1s found to be
satisfactorily obeyed [Kop88]

7. Conclusion

It seems to us that a paper like this should end with a list of open problems, great or small, which are
suggested here and there in the body of this review, or which are natural generalizations of the models
considered above. We shall Iist them chapter by chapter as they appear 1n the article, regardless of their
relative interest or difficulty.

1. A general theory of the limit distributions for sums of correlated random variables is still, to a
large extent, lacking (attraction basins, dependence of the limit law on the structure of the correlations);
as mentioned in section 1.3, tools inspired from the renormalization group are probably well suited for
investigating this question. In the same spirit, an analytic calculation of the full average diffusion front
in Matheron-de Marsily’s layered model (section 1.3.2 and appendix C) would also be welcome.
Self-consistent approaches “a la Flory” to various problems involving “relevant” correlations, when
interpreted along the ideas of section 1.3.3.2, also raise a number of questions: Is Flory’s approximation
really an upper bound to the true value of », as suggested in section 1.3.3; similarly, is 4/(4 + d) a lower
bound in the case of linear polymers? Finally, could one devise approximations “a la Flory” for the
cntical exponents of more general critical phenomena [e.g., the O(n) model]?

2. The sample to sample fluctuations discussed in section 2.1.2 deserve further study, in particular
regarding the equivalence between different averaging procedures. An interesting question in this
respect, which we believe to be connected with some physical issues in relaxation processes, 1s that of
ergodicity: in precisely what circumstances does the histogram of the positions of one particle in a given
sample (correctly rescaled) coincide with the average over disorder of P(x,t)? This question is
particularly intriguing in Sinai’s problem.

Other, more specific, unsolved questions encountered in ch. 2 are the shape of the scaling function
describing the diffusion front for random traps (in d <2) and random barriers (in d = 1) with broad
distributions of inverse hopping rates (including the mere existence of a CLT for a fixed sample 1n the
random traps case) and the exact calculation of the prefactors of the diffusion law.

3. A proof that the diffusion coefficient is self-averaging for a general one-dimensional asymmetric
hopping model (a physically likely property) is still lacking (it has been provided in [Asl89a] for the
directed limit only).

A number of features of the remarkably rich one-dimensional random-force model of section 3.3
(and of the similar asymmetric hopping models) still deserve nvestigation, in particular in the u <1
phase. As discovered by Golosov [Gol84] and reviewed 1n section 3.3.2.2, two particles starting at the
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same pomt and subjected to different thermal noises do not separate with time, one may thus ask the
following complementary question what happens to two particles mitially separated by a distance L?
Our guess 1s that for u =0 they meet after a finite time ¢ [typically of order exp(L'/*)] and remain close
ever thereafter What happens for u > 0? Clearly, the u <1 phase shares a number of similarities with
glassy dynamics. Does this phase exhibit ageing phenomena (1.e non-stationary evolution), like the
dynamics of spin glasses below T, [Lun85, Alb86, 87], as suggested in [Fe188]?

The physical situations to which this model applies also raise questions: numerical simulations of the
relaxation of the random field Ising model in a + H field, intially prepared in a down-spin configura-
tion, would test the predictions made 1n section 3.3.7.1, 3, and allow one to mnvestigate more precisely
the mterplay of domamn wall creep and nucleation; a more detailed quantitative study of dislocation
motion and comparison with experiments 1s also an nteresting path to follow [Bou89g]

4 A number of open problems and questions are also raised by the random-force model in higher
dimensions*
~ The effect of a bias 1n the potential case, in particular, when unbiased diffusion 1s logarithmic (d <2
for a>d and a <2 for any d > a): could there be a zero-velocity (“‘creep”) phase as n d =1?
—Does the Golosov phenomenon still hold for this logarithmic diffusion?

— The nature of the sample to sample fluctuations (1.e., the possible differences between the diffusion
behaviour for a given sample and the average one), in particular in the long-range correlated case
- Almost nothing 1s known on the shape of the diffusion front in this model for d >1

- A more detailed study of the effect of the anisotropy in the random-force correlations (see [Dug89]
for a most recent first study) 1s required, 1 particular of the crossover between 1sotropic situations and
the layered models of section 1.3 2

Here again, possible applications to physical situations raise perhaps the most nteresting questions:
— How well does the hydrodynamical case div F =0 with long-range correlations (namely a close to
—2/3) describe turbulent diffusion? In particular, what 1s the asymptotic diffusion front for this model
and does 1t compare favourably with experiments? Could the diffusion exponent for turbulent diffusion
continuously depend on the compressibility of the fluid, as the line of fixed poimnts of section 4.3 2
suggests?

5. It has been shown 1n section 5.4 that the response to a weak external oscillating field exhibits
(especially 1n one dimension) non-trivial crossover behaviour. For a given frequency, the response 1s
linear 1n the field only for very weak fields F < ” Could the non-linear mobility predicted for higher
fields be observed, either in one-dimensional 1onic conductors [Bey81], see sections 5 4 2, or m a biased
version of the Cardoso~Tabeling [Car88] experiment on diffusion among convection rolls, see section
12.3.3?

6 Fially, we have obtained 1n section 6 3.4 1 the full “‘phase diagram” for the behaviour of a
particle subjected to an oscillating field on the percolation network. Numerical simulations at the
percolation threshold agree well with our theory, simulations off threshold would also be most
welcome.

Finally, a few general questions are the following.

—In most diffusion models considered in this article, the effect of nertia 1s neglected. For the
random-force model, for example, 1t 1s natural to wonder what happens to the laws obtained in chapters
3 and 4 if the nertia of the particle 1s taken mnto account, that 1s, if the Langevin equation is written as

mX,+ yX,=F(X,))+ n() .

Our guess 1s that at long times the behaviour 1s not modified by a non-zero mass m
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- Similarly, what are the diffusion laws if disorder is not quenched but evolves with a given time
autocorrelation function? Brownian diffusion is probably recovered at times much larger than the
correlation time of the disorder.

We think, however, that the most interesting and fruitful path to follow 1s the dynamics of lines
(polymer, dislocation, vortices, step on a crystalline surface, etc.) or surfaces (domamn wall, etc.)
random media, which applies to a rich variety of physical situations (spin glasses, disordered type II
superconductors, etc.) In other words, one tries to understand the role of the internal degrees of
freedom in the overall motion of the “defect” Such an investigation has of course already been the
subject of several works; we hope that the general ideas and methods developed here could help to
make some progress 1n the qualitative understanding of these problems
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Appendix A. Some useful results and techniques in the theory of random walks

This appendix is only a brief (and lacunar) summary; the reader 1s referred to refs [G1, G5-G9,
G13] for further information.

A.1 Random walk on a regular lattice, master equation, probability of presence
A discrete-time random walk process on a regular lattice 1s defined by the probability p(e) to jump

from site X to site X + e at each tume step The probability P(X, ¢) to find the walker on site X at time ¢
obeys the master equation (which simply expresses the conservation of probability)

P(X,t+1)=2, p(e)P(X — ¢, ) (A.1)

(the time step has been normalized to umty). Equation (A.1) has to be supplemented with initial
conditions, e.g.,

P(X,t=0)=6, (A.2)
Translation mvariance allows one to solve (A.1) by Fourier transforming. Defining

Pk, t)=2, e ™ *P(X, 1), (A.3)
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the solution of (A 1), (A.2) reads
Pk, ty=[p(0)]", (A 4)
where p(k) is the structure function characteristic of the lattice,

plk)=2 ple)e™". (A.5)

For a d-dimensional hypercubic lattice with only nearest-neighbour jumps,

p(k) = % 2 cos(ak,) (A 6)

n=1

P(X, t) 1s recovered by integration over the Brilloumn zone of the reciprocal lattice,
d ddk ik X
PX,t)=L" | —— " "P(k, 1) (A.7)
(2m)

In the large-time limit this integral is dominated by the vicinity of k = 0 (since | p(k)| < 1); hence P(X, )
is asymptotically a Gaussian distribution [D = (det DM)1 ,

P(X, t)— (4wDr)™""? exp(—% (X, -V,0)D,, (X, - VVt)> , (A.8)
where the velocity V' and diffusion tensor D,, are given by
V,=2eple)=(e,).

D,, =1l(e,e,) —(e,)(e,)]

This illustrates the remarks made in section 1 1 on the central limit theorem: In the regime where (A.8)
apphes, only the first two moments of p(e) remam and the detailed structure of the lattice is washed
out. For the simple hypercubic example,

(A.9)

D,, =(d2d)s,, (A 10)

Restoring the time step 7,, these expressions for V and D must be divided by 7,. Substracting P(X, ¢) on
both sides of (A.1), the continuum limit 7,— 0 is taken by keeping W(e) = p(e) /7, fixed, leading to the
continuous-time master equation,

aa—f =2, W(e)[P(X — ¢, 1) — P(X, 1)] . (A.11)

W(e) 1s the hopping rate per unit time
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A.2. Dustribution of first passage time and number of visited sites

Let us denote by P,(X, t) the probability that a walker starting on X =0 at =0 first reaches X at
time ¢ It obeys the following relation

P(X,t)= 2, P,(X.t"P(X, t|X.1'),
t'=1

which expresses the fact that, in order to be on site X at time ¢ the walker has to reach this site for the
first tme at any time ' =1, 2, ¢ and then to be agamn on X at time ¢ On a regular lattice,
translation invariance allows us to put this relation in the form

P(X.0)= 2, P,(X, )P0, t—1'). (A 12)
t'=1
This can be solved by introducing the generating functions
P(X, )= P(X, )\, P(X,A)=2 P(X, )\ (A.13)
t=0 t=1

(note the difference in the range of summation, due to the fact that P,(X, 0) 1s non-zero only for X = 0)
Formula (A.12) then reads

P(X, A) - P(X,0)= P,(X, \)P(0, A),
which finally yields

P,(X,\)=P(X, ))/P(0,)), X#0, P(0,)=1-P0, 1" (A.14)
Using (A .4), ﬁ(k, A) reads

P(k, A)=[1— Ap(k)]" (A.15)

Several interesting quantities can be obtained from f’l (X, A). The probabulity to visit site X at least once
reads

i P(X,1)=P,(X,2=1), (A.16)

which, for X =0, 1s the probabulity to come back at least once at the mitial site,
po=P,(0,A=1)=1-P(0,1)". (A.17)

In the simple case of a hypercubic lattice with nearest-neighbour jumps ﬁ(O, A) reads

P(0, A) = (%)dfddk(l - % iﬂ cos(ak#))_l . (A.18)
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This integral is infra-red divergent for A =1 if d <2 and converges for d >2. As a result, the walker
always comes back to 1ts mmtial position in d =2 ( p, = 1) while p,, is finite for d >2 (p, =0.3405 . for
a cubic lattice) The divergence of P(0, A) for d <2 is characterized by

P(0, X) ~ (1= )**, d<2,
. A1, (A.19)
P(0, )~ (1/m)In[1/(1-A)], d=2,

Using (A 14), this yields the time dependence of the distribution of the first passage times at the initial
site, P,(0, ¢), at large time,

P,(0,6)~C/e 7", d<2,
(A.20)
P (0,t)~c/Int, d>?2

Another quantity of physical interest 1s the distribution of the number S, of visited sites. This 1s a
difficult problem, of which no full explicit solution 1s known. (Note that the probability that S, =t 1s
proportional to the number of self-avoiding walks of ¢ steps on the lattice!) The average value of S, can,
however, be obtaned from P,(X, ¢), since

S=1+2 EIPI(XJ) (A21)

X#0 t'=1

(Z4_, P,(X, ) 1s the probabihty that X has been visited between ' =1 and ¢’ =t.) The generating
functions are thus related by

S0 =(1-1072B0, A)" (A.22)

Using (A.19) together with

PO, )~ A, +x,(1- )" 4.0 2<d<4,

. (A.23)

PO,)~A,+B,(A-D+x,A-D)"""+ -, d>4,

leads to

P d<2,

- tlnt+ , d=12,

S~ HA +a ™"+ - 2<d<4, (A 24)
/A, + BJAL+ , d>4

The average number of visits of a site thus diverges at long time for d <2, while 1t 1s fimite for d >2
Thus 1s of great importance to understand the effect of disorder on random walks (see 1n particular ch.
4)
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A.3 Continuous-time random walks

A general continuous-time random walk (CTRW) is defined by the probability ¢(e, r) d¢ that the
walker remains for a time ¢ at a given site before performing a jump of length e between ¢ and ¢ + d¢. ¢
is normalized by 1=, [ dt ¢(e, ) The probability that the walker remains at the same site between 0
and ¢ thus reads

p()=1- Z f (e, t')de’ . (A 25)

0

Let us consider a single walker with initial condition P(X, t=0)= &, , and denote by Q(X, ) dt the
probability that the walker has arrived on site X between ¢ and ¢ + dt and has not moved since. P(X, ¢)
and Q(X, 1) obey the following coupled equations:

4

P, 0) = [ 4 9= 000, 1)+ 805y,

0

t (A.26)
0x.0)=3 [ dr e, t- 10X ~ e, + S dle, )0y
0
which are easily solved by Fourier—Laplace transform (on space and time, respectively),
« b(k; E < 1- §(k=0,E
o Ey= PEE) g gy L WE=0.E) (A 27)
1= y(k; E) E[1~ y(k, E)]

Remark When considering other types of imtial conditions (e.g., for a stationary mitial state) the
first jump requires a special treatment and the solution (A 27) is modified For a thorough discussion of
this pomt, see e.g ref. [G13] and references therein.

The CTRWs considered in chapter 1 are separable, 1.e., such that

Ple, 1) = p(e)y(r), (A 28)
where p(e) 1s the jump length distnibution and (¢) is the waiting-time distribution (w.t.d.). Then

5o o _ 1-(E)
)= - dEpto] “2)

from which the diffusion behaviour and diffusion front of section 1 2.3.1 are easily derived by expansion
for small E and small k. Two particular cases are worth mentioning:

* Poissoman w.t.d () = W exp(—Wr), for which jumps are performed at a constant rate W In this
case

1

P(k, E) = E+W[1-pk)]

(A.30)
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* The discrete-time random walk of section A.1 1s recovered provided one chooses ¥(t) = 8(t — 7,)
Then

1—e 5o 1

P(k, E) = - :
( ) E 1 —e ETDp(k)

(A31)

and one should 1dentify A 1n (A 13) with exp(— E7,) Note, however, that the two expressions (A.15)
and (A 31) are different, not surprisingly, the resulting values of P(X, t) only comnaide for times ¢ = nr,
with integer n

Appendix B. Limit distributions for sums of independent random variables; stable laws

Consider the following sum

Z,=2 x . (B.1)
A=1

where the x, are independent and all distributed according to the same probability distribution p(x)
One would Like to know the answer to the following questions

—How must one choose the two normalizations A,, B, m order to obtain a limit distribution (when
n— ) for the rescaled variable u=Z2,/B, — A,”?

— What 1s the distribution P(u) such that

Problu, =u= u2]~n:>f P(u)du? (B2)

1

In this case, one says that p belongs to the attraction basin of P

This problem 1s a classic 1n probability theory since the work of Khintchine and Levy Useful
references are refs [G2-G4], with a particular mention of the brlliant book by Gnedenko and
Kolmogorov [G2], from which we have extracted most of the matenal presented in this appendix

B 1 Attraction basin of the normal law and convergence towards it
The following theorem characterizes fully the situations where P 1s the Gaussian (normal) law-

Theorem 1 (Khintchine, Feller, Levy) p(x) belongs to the attraction basin of the normal law if and
only 1if

- x)dx
im X2 f}x} Xp( ) _

A== ex Xp(x)dx (B3)

This theorem 1s the most refined form of the CLT mentioned 1n section 1 1 It allows one to state that,
for example, a distribution p(x) decaying as x  for large x belongs to the attraction basin of the normal
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distribution, even though its variance 1s infinite. All the distributions decaying faster than the latter also
belong to the attraction basin of the Gaussian, which 1s thus extremely vast. This is of course the reason
why the Gaussian law 1s ommipresent in physical situations, “anomalous” behaviour being comparative-
ly rarer

Concerning the normalisations A, B, one has the following theorem:

Theorem 2 1f and only 1f p(x) has a finite variance o = (x*) — (x)* will the normalizations read

B, =van, (B 4)
A B =n(x). (B.5)

P(x) then reads G(x) = (2m) """ exp(—x%/2).
The fact that a finite o 1s a sufficient condition was already known to Laplace (see, e.g., ref. [G9]).
Convergence towards the normal law [Chebyshev 1887]. It 1s possible to characterize 1n a precise

manner the convergence of P(x) towards the normal law when n— by a systematic expansion of the
difference in powers of n~''%. One obtams (for (x) =0, o =1)

f [P,(4) - G(w)] du=(2m)™""? exp(—Z2/2)<Q11(f) L IC Q;k(f) +- ) , (B6)

n n

where the O, are polynomials (see ref. [G2] for their general expression), the first two of which read
(/\k = <xk>c0nn/0k/2)

Qi) =44(1-x"),  Qy(x)=(10/6DA3" + §(3A, = FA)x" + (FA5 — §A)x

Hence the way P converges towards the normal law G depends upon the details of the nitial distribution
p through higher and higher moments for shorter “times”.

B.2. Stable laws; general characterization and attraction basins

The distribution of the sum of two independent varnables 1s the convolution of their probability
distributions. Therefore the fundamental property allowing the classification of all possible limiting
distributions 1s the invarance of these under convolution. More precisely,

Theorem 3. For P(x) to be a possible limiting distribution for the above reduced variable, there must
exist, for all a;, a,(>0), b,, b, two quantities a(>0), b such that

P(a,x+b,) = P(a,x + b,) = P(ax + b) . (B.7)

In particular, the normal law satisfies this condition. In Fourier space, convolution 1s simply multiplica-
tion of the Fourier transforms. Hence the classification of stable laws takes a particularly simple form
stated 1n terms of their characteristic functions.
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Theorem 4. Canonical representation of stable laws (Levy, Khintchine). P(x)=(27) ' x
[, e**P(k) dk is a stable law if and only if 1ts charactenistic function reads

In P(k) =1yk — C|k|*[1 + 1B sign(k) w(k, )], (B.8)
where u, B, v, C are real numbers such that ~1=8=<+1,0<u =<2, C=0, and
w(k, p)=tan(mu/2) for u#1, wk, p)=Q2/m)In|k| foru=1 (B.9)

y and C are simply “‘scale” factors, associated to change n origin (x— x + cte) or dilatation (x— rx)
The two really important parameters are thus p and B, and we shall denote the stable laws by L b p 7

characterizes their large-x behaviour: L, ;= |x|™"™* (for u <2). All the positive moments {|x|) of
L, , are finite for k < u and infinite otherw1se In particular, the vanance of L, , is infinite for u <2
The number B characterizes the asymmetry of these laws:
—for B =0, one has an even function of x,
—for g==1, the law 1s “maximally” asymmetric, 1t 1s, for 0<u <1, concentrated in |-, y]| for
B=-1and in [y, [ for B =+1

For u =2, B disappears since in that case w = 0; one recovers the unique normal law centred on 7.
Some exp11c1t forms and asymptotic expansions of L, , will be given m the next section The initial
problem is completely solved by the following theorem characterizing the attraction basin of stable
laws

Theorem 5a (Gnedenko, Doebhn) p(x) belongs to the attraction basin of L, 4 1f and only if its
repartition function R(X) = [*_ p(x) dx satisfies the following properties:

_X —
1) pm —(R()()’) - i+g (B 10)
(i1) For any r,
I 1-R(X)+ R(—-X) _ (B 11)

xon 1— R(rX) + R(—rX)

This theorem echoes theorem 1 for the normal law. It means that L, , attracts all the distributions p(x)
which essentially behave as L, , at infinity. As such, this theorem does not specify the normalizations
A, B, to be chosen (see, however, ref. [G2], p 175) A very important practical case is when p(x)
decays purely algebraically; 1n this case, B, =n'™* (apart from logarithms for u =1, 2), and the most
useful theorem, specifying the behaviour guessed by the simple arguments of section 11, is:

1/

Theorem 5b (Gnedenko) p(x) belongs to the attraction basin of L, ; with B, = n""", if and only if

pry=c_|x|"** ifx>-w,  pE)=c x ™ (fxow (B.12)

Then B=(c, —c_)/(c, +c_) and
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B 3 m(c, +c_)
A0, C= Ry for 0< <1, (B.13)
+
AB =n(x), me, *e) for 1<p<2; (B.14)

B 2u” sin(mp/2) M —1)°
for p =1, p =2, see ref. [G2].

Let us sketch the proof that a distribution p(x) satisfying the above conditions indeed belongs to the
attraction basin of L, ,. Following the lines of section 1.1, one has to study the limit of p(k/N Y+ for
large N. It is easily seen that in this limit one has

II“

c,—c._ Im(I“))

A Vpy —
plkIN #)=1- (c, +c_)Re(l, )< 1s1gn(k) c. v Re(l,) (B.15)
R T R S BT o pu— — , for1>u>0;
Of w(imetu b sin(mys) T(1) g
~ lpy 1 _ 1k(x) _ |k|“ ( . c, —C_ Im(-’“))
p(kIN"*)=1 N N (c, +c_)Re(J,) |1 -isign(k) ¢, ¥c. Re(l,) (B.16)

7T
w’ sin(mp) M(p = 1)’

=J’du (1+iu—e“)u ' " =e™™"? for2>pu>1.
0

The expressions for C and B directly follow from these expansions.
B.3. Some useful explicit expressions and expansions

In this section we only quote the most useful results on stable laws. More information can be found
in ref. [G2-G4].

The symmetrical laws L, ,. One can always choose y =0, C =1 [since LS Lpx)=C “tept wp(xC 9]
and hence study the density L, , defined as

[

=(Q2m)"! J eIk g (B.17)

—

L, , of course 1s 1dentical to the Gaussian G, and L, , is the Cauchy distribution L, ,=1/7(1+x 3.
L# takes a fimte value at the origin: L, ((0) = () 'T(1/p), which becomes very large as u—0.
- The (Cauchy) expansion around x =0 reads

L, o(x)= (mp)™ 2( ) o Tk + D), (B.18)

the radius of convergence of which is zero for u <1 and infinite for 1< pu <2
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- The (Wintner) expansion for large arguments 1s

~ x . x—(ﬂkﬂ)
L, (x)=(7)" ; (=)t o T(L+ k) sin(mpk/2). (B 19)
the leading term of which reads
L, o(x)=(m) x “Or(1 + p)sin(mu/2) (B 20)

A detailed study of the behaviour of those properties in the (singular) limit u = 0 can be found in ref
[G4]
The negative moments of L, , read

oy I'(v/p)
(x )= wl'(v) cos(mv/2)

(B.21)

The asymmetrical laws L, ., Stll choosing y =0, one can show that L, , (which we shall denote
sumply by L) can be expressed as an mverse Laplace transform,

d+1%

_ L J sx—C's*
L,(x)= 7 dse , (B 22)
d—1x

with C' = C/cos(mu/2) This law has the support [0, +oo[ for u <1 and |-, +[ for 1< u <2
N B A stretched exponential decay (Kohlrausch law) 1s thus obtamed if the relaxation time density
1s an L, stable law,

e <" =f L (r e d=™") (B 23)
0
L, takes a particularly simple form for u =1/2 or u =1/3
—For u=1/2,
Ly (1) = O(x) 53 &~ (B 24)
V2w x

(@ 1s the step function). This distribution has a simple physical mterpretation: it 1s the limiting law of
return times to the origin for a one-dimensional symmetrical random walk The nth return time 7, to
the origim 1s typically of order n° and

Prob[z <27 /mn’ <z + dz]—> L, ,(z) dz (B.25)

—For u=1/3, L,,; 1s a modified Bessel function of order 1/3 (see section 124 for a physical
application, for x >0,

xL,,,(x)= (u/m)ysm(w/3) K, ,(u), u=2(2C/3"%'"*)"> (B 26)
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For large x, the expansion of L, (x) reads, for u <1,

S (=€ )k T+ KB Gk (B.27)

Lu(x)= *(Wx)wl 2 ( B F(1+ k)

k=1 X
Hence the leading behaviour for x large is, for u <1,

L,(x)=C 2ul(p) sin(mu/2) . (B 28)

7Tx(1+;t)

For small x, L, exhibits an essential singularity,

xL, () =[2m(1 - p)¢]™" eXp(—l;—{“) , L= (:—2,)1/(1_“) (B 29)

This behaviour controls the shape of the diffusion front in the random walk problems encountered 1n
chs. 1 and 3.
The negative moments of L, read

(x7")y=C"""" T(wip)IuI(v). (B.30)

Appendix C. Diffusion behaviour and diffusion front in the Matheron—de Marsily layered model

In this appendix, some analytical results are derived for the diffusion behaviour and diffusion fronts
of the layered model [Mat80] described in section 1.3.2, with particular emphasis on the different
possible ensemble averages. This question has been the subject of recent investigations [Dou89a,
Red89, Bou89f] (we are grateful to Redner for having drawn our attention to some of the points
below).

The velocity distribution will be taken to be white noise,
(Vy=0, (V(ZW(Z"))=0,8(Z-2'),

and the thermal noise along Z will be neglected (it is a non-leading contribution to diffusion at large
time, so we can set D = 0).

The motion along Z is a standard Brownian motion,

t

z,=[neyar, am=2D,50-1), " (c.1)

and the position X, depends on both the “thermal history” (Z,; ¢ <t) and the environment (V(Z)).
The beauty and simplicity of this model is that one has an explicit form for this dependence,

X = f V[Z.]dr . (C2)
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In taking averages, 1t will be necessary to separate independent variables m this expression. Defining
n(Z) as the number of times the Browman motion (Z,; ¢’ <) has visited position Z,

n(Z) =fB(Z - Z,)dt, (C.3)
(C 2) can be cast n the convenient form
X12,): (V@)1= | azn2v2) ()
The thermal average of the position thus reads
X = f dZ n(Z)V(Z) (C5)
n,(Z) 1s easily computed from the knowledge of the (Gaussian) probability distribution
P (Z,t)=(4wD, t)"'"?exp(-Z%4D 1)

of the transverse Brownian motion One obtains

2]

47D,

n(Z) =fdt’ P(Z )= I(-4,Z°4D 1), (C6)
0

where I'(—3; x) denotes the incomplete gamma function (note that 1t 1s simply related to the error
function) Thus

- 1
X= 4vaD,

f dZ|Z|I(-4, Z/4D )V(Z) (C7)

X, still depends on the environment (V(Z)) In particular, i does not converge to zero at large nme for a
given (V(Z)), only 1ts average over environments (X,) 1s zero (for all times, since no global bias 1s
present) X, has a distribution over environments which 1s obviously a Gaussian of variance ((7,)2)

The latter can be calculated 1n closed form from (C 7),

(@) =0, [aZ (D = oD, 1"
(C8)

1 f 2 1 252 4
== -3 = e -1
1 p ul(—5,u") du 3\/7__‘_(\/5 )
0
The thermal average of the squared position 1s related to the correlation function n,(Z)n(Z') as

X2 = f dZ dZ' V(Z)WV(Z Y (Z)n(Z)) (C9)
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and 1ts average 1s also easily computed,

<Ytz> = O-VJ’dZ ”z(Z)Z

t t'
=2q, f dr’ f d" P (Z,1'|Z, t")P,(Z, ]0,0)

o,
) J.dtf v__ 32 10
P \/47TDL(t —1") 3 VaD, d (C.10)

One concludes from these results that both (X2) — ((X))? = (X*) and (X2) - {(X,)*) behave
anomalously as D['*f’? at large time, but with different prefactors,

O, 2
(Xty=2 =77, (C 11a)
3 VaD,

(X2- (X)) =42-V2)

Oy 32
/D C11b

Note that only the average one, (? , was obtained 1n the oniginal paper [Mat80].) It 1s expected (as
y g ‘ od 19

would be confirmed by a calculation of 1its fluctuation) that the behaviour of X, 2—(X)* 15 indeed
self-averaging and behaves as its average (C.11b) for a gien env1ronment V(Z)) However it follows
from (C.11) that the distribution of the rescaled position X,/t*'* over thermal histories [1.e., P(X, )] for
a given sample does not obey a “generalized CLT” at large time (1.e., does not reach a hmit form) Only
the average front ( P(X, t)) does, on which we now comment.

 It1s easily shown from (C.4) that X,, being an integral of V(Z), has a distribution over samples for a
fixed thermal history which is a Gaussian of varnance

QO=o, f dZ n/(Z)’ (C.12)

This quantity has still a distribution over thermal histories. Computing 1ts average (that 1s, (P(X, 1)))

requires the knowledge of the distribution of Q (or alternatively of the charactenstic function e”?). We
shall not attempt to calculate fully this distribution here, but rather make a conjecture on the tail of
(P(X, 1)), in the regime X > ’* Physically, the main contributions to this tail is from walks which
have visited a small number of layers, and thus for which Q is much larger than its average (since this
quantity counts the number of at least doubly visited layers). Let us assume that the distribution of Q
(over histories) behaves for Q > Q as exp[—(Q/Q)"], where B is some exponent The tail of { P(X, t))
1s deduced from (C.12) by a saddle point estimate,

2B

| 40 expl-(010)" ~ X1Q) ~ expl—(x1 (X7) Y], 8= 2 ;

It can be argued [Bou89f] (by estimating the weight of “confined” walks) that the distribution of Q 1s in
fact Gaussian at large Q, i.e , B =2. This suggests that the tail of (P(X,)) for X>r'* has the
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markedly non-Gaussian behaviour exp[—(X/t’'*)*’]. One observes that the value & = 1/(1-v)=4
discussed through linear response arguments 1n section 5 3.1 and 5.3 2 1s not obeyed; as pointed out at
the end of section 5.3.1, this 1s not surprsing in view of the existence of correlations up to the scale
0,/DF* > kT/F. The shape of the full scaling function associated with ( P(X, 1)),

(P(X, 1)) =" f(xie"™)

has been very recently investigated numerically [Bou89f] and analytically [Dou90, Zum90]. Another
open question on this model is whether the histogram of the position of a single walker for a given
history and environment indeed coincide (when rescaled by £'*) with (P(X, t)), as ergodicity would
suggest, or whether the model displays some kind of “ergodicity breaking”

Appendix D. Two theorems on electrical networks
D 1 Dernda’s proof of relation (2.15) [G14]

If one considers a random network (o, 1s the conductance between site : and ;) and 1f each site 1s
connected to the mass by a capacitance C, the time dependence of the potential V, on site 1 1s given by

dv, _
C'= ; a,(V,~V) (D.1)

We see that this equation 1s the same as the master equation (2 1) for P, So the properties of the two
problems should be related. We are now going to see that the diffusion constant for the diffusion
problem 1s related to the conductivity of the random resistor network.

(@) The diffusion constant. One can define a diffusion constant D, corresponding to the direction a
by

{[x()-a]’)~2D,t. (D.2)

( ) means average over the starting points.
We are now going to calculate D, for a periodic lattice in d dimensions with an elementary cell 2
contamning [* sites with arbitrary hopping rates W_.. in this cell. The master equation 1s

dP /dt=2 W (P, - P,), (D.3)
and the periodicity of the lattice means that d - I arbitrary values of W,,. are given and that

w

xx'

=W,

x+nl x +nl

for any n € 7*

Because the lattice 1s periodic, 1t 1s convenient to introduce two quantities for each site x of the cell,

szsz+nl ’ szz (x+nl)Px+nl
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These quantities satisfy the following equations

$ 0, =S W (0o-0),  SREIWLR-R)+S X )W,0, (D4)

Let us see how (d/df){(x- @)’) can be expressed in terms of 0, and R,

Sl @) =2 o) 2 =S @ SWp - P)

=> 2(x-a)(x' +a—-x-a)W, P +(x' a—x a)W,]

=2 2R ) a-x-a)W,, +(xa-x a)QW,] (D.5)

xEN x'

For long times, O, and R, have a finite limit,

Q. -1, R—>1N1r,, (D 6)
where r, are solutions of

2 [Wolr, —r)+(x—x)W,]=0. (D.7)
So the diffusion constant D, 1n the direction e is given by

2D =tim ([x(t) - a]?)

e
- l—ld 3 SR a) @ s W, + (@ amx@)W,.]. (D.8)

We are now going to see that the conductivity is given by a very similar expression.

(b) The conductivity of a random resistor network. Consider again a periodic lattice with a unit cell
0 of sites. All the conductances o,,. in the unit cell are arbitrary and one has

_ d
Orx = Ointx'+ni» NIt €Z°.

Let us put two electrodes perpendicular to a direction a. Since the medium is periodic, one expects a
potential V, which has the following form:

Vx =Ta .xE + l//x ’ (px = ¢x+nl * (D9)
One can define r_ by ¢, =r_- «E. Then the conservation of current reads

E alxx’(vx’ - Vx) = 0 b4
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which gives
2o -0+ 0. (r, —r)=0 (D 10)

We see that the equation which determines r, 1s the same as n the diffusion problem
In a cube of [ sites. the current in direction & 1s

% D a-(x —x) (V.- V.)o,.

~ e x’

(the factor 1/2 1s due to the fact that each bond 1s counted twice) The current j, per site 1s

Ess [(x'-a—-x-a)o, +2r, a)(x' a-x-a)o,], (D 11)

= E =
]a Ua 2ld S
by defimition of the conductivity o, We see that the expressions of D, and o, are 1dentical (since r_are
given by the same equations)

We have therefore shown that for any periodic lattice

D,=a, fW =0, (D 12)

Let us make two remarks concerning the validity of this result.

(1) It was obtaned by assuming that Q,—1/ * and R has a limit as t— o Thus 1s true only if there 1s
no 1solated cluster or site Therefore one should shghtly modify this result in the case of percolation
networks (see section 6 3 2 1)

(un) The relation D, = ¢, has been derived for a periodic lattice of period / It 1s not obvious that the
diffusion coefficients of the disordered medium can be obtained by taking D, 1n the limit / — > because
the two limuts /— and /— = may not commute, see, however, the discussion n chapters 2 and 3

D.2. The “path integral’ representation of the conductance [Doy84, Gef87]

Take a disordered lattice characterized by random hopping rates W, = W, If one imposes a constant
number of particles at sites A and B (N, and Ny), a non-zero current [ of particles has to be suppled
(or taken away) at Aif N, # N,

I= =N, 2 W, + X NW,, =2 W, (N,-N,) (D 13)

Solving the master equation with N,, Ny fixed corresponds, 1n the electrical language, to solving
Kirchoff's rules with fixed potentials V,, V I then corresponds to the current mjected at A Now, if
one calls 7, the total probability for a particle to leave site A and reach site B without returning to A
at intermediate times and Q, the total probability for a particle to leave A and come back to A without
hitting B at intermediate times, one has

Tag T Qx=1 (D 14)
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The probability to leave A per unit time 1s clearly &, W,,. The current I may thus also be computed as
I= (NAz 2 WA1>(_1 +0.)+ (NB z WB:) Tga - (D 15)

Since the hopping rates are symmetrical, the total probability to hop from A to B 1s equal to that of
hopping from B to A; thus

2 WoTss= E W T4 - (D 16)

Otherwise stated, if N, = Nj, an equilibrium state with N, = N, = N for all : can be reached and [ =0
From (D.14) and (D.15), (D.16) one derives

I=(NA—NB)TAB<—2 WA;) , (D17)
which, upon the 1dentification W, = o, , V, = N,, yields the conductance 3,, between A and B as
2ap = (E WA:) Tpp = (2 WB:) Tga (D.18)

Note that, in other words, 3,5 = Gy, — Gaa + Gap — Ggg, Where G, = P(x, y, E =0) is the Green
function of the master equation (D.3).

Hilfer and Blumen [Hil88] have furthermore shown that a simple relation exists between T ,5 and
some fime constants 1n the diffusion problem. Namely, if one calls ¢, , the mean first return time to A
and 7,, the mean first passage time at B starting at A, they have shown that

Thp 22:;/(KB_ +E)

Appendix E. Fluctuation—dissipation theorem in the potential case

If the Brownian particle follows an overdamped Langevin equation in which the force F is the
gradient of some potential, then one can prove a fluctuation—dissipation theorem Its formulation
depends on the nature of the potential: either it grows sufficiently fast for large distances to localize the

particle [1 e., lim, ., x°(¢) 1s fimte] or the particle can escape and x°(¢) grows without bounds, usually as
Dt. The problem dealt with in this appendix 1s to obtain the response of the particle to a weak
oscillating external field ef €. Let us illustrate how this can be reached on the example of a
one-dimensional “confining” potential; the calculations are easily transposed to higher dimensions or
non-confining potentials (see below).

We thus consider a particle i equilibrium evolving according to yx = —U'(x) + n(f) + ef €. The

associated Fokker—Planck equation for P can be transformed into a Schrodinger equation (see, e.g



286 J -P Bouchaud and A Georges, Anomalous diffusion in disordered media
ref. [G5] and section 3 3 5), which 1s expanded in powers of ¢, ¥ =¥, + ¢¥, ', with
-1 —-U/2kT
Y(x)=VP(x)=Z "¢ ,

which 1s the ground state of

_ 5 1
H==D,g} + (4Dyy") 'V = 5 U, Dy=T

The equation for ¥, reads
WV, =~ HY, ~ (2f/y)9, ¥,
Introduemg H=1, E,|a){al, [0) =¥,, E,=0 and ¥, =1, c,|B), one obtamns
¢y = —2f(B13,10) IN(E, +10).

Noticing that 2Dd, =[x, H], this transforms nto

(x(0)) = [ arxp, (0 = (D) 2 5o (alsf0) e

or, defining the susceptibility y(w) as (8x(w)) = x(w)f €', one has, using D,y = kT,

Ea
E, +io

KTx(w) = 2 (elxl0)]’

The zero-frequency hmt takes a very simple form (using L_ |a)(a|=1),

x(0) = LR

which 1s the standard fluctuation—dissipation theorem

Remark. 1f U(x) 1s a harmonic potential, 2U(x) = kT,(x/l)’, then one has an explcit formula for
x(w) at all frequencies,
7 1 r

Xw) = kT (TO/T)2 +1w7’ 4 D,

Following the same lines, one may prove that 1n the case of a non-confining potential, the mobility,
defined as m(w) = w0 (dx(w)) /f €', has a zero-frequency limit given by the Einstein relation,

m(w=0)= DIkT ,

with D # D, the diffusion constant modified by the force field.
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Biased diffusion 31,33,433,5,622,634

Bilhards 1221

Branched polymers 1333

Broad distnbutions 11,12,2213,24,32,333,334,55,56,
631,633

Central Limt Theorem 1,211,212,334,4223,app A.B
non-existence of - 2122,313, app C

Clusters (size distribution) 63

Comb-like structures 1232, 633

Conductivity (ac ordc) 221,542,543,621,632,app D
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Configuration space (diffusion in) 4122
Continuously varymg exponent 333,334,4323,542,55,6
Continuous-time random walk 1231,241,543
Convection rolls (diffusion m) 1234
Correlations (long-ranged) 13,24,411,421,56,631
Creep, see Dnft (anomalous)
Cntical phenomena 11,133,134,4223,533,631
Crossover arguments 3342,53,54,622,63
Cut-off distnbutions 121,224,633
Dead ends 56,632,633
Density of states 222,335,61
Diffusion constant 11, 1231,212,22,24,3123-4,3312,
422,423,63
Diffusion front
anomalous 121, 1231, 1333, 134, 32, 3322, 3341,
532,61,623,app B,C
Gaussian 11,132,3111,3341, app A
Dimension
fractal 122,1333,61
spectral 1333,61
spreading (or chemical) 1333,61
Dislocations 3373
Dispersion
anomalous 334,433,56
normal 433,56,634
Domam wall 336,3371,3372
Drift (anomalous) 334,337,433,53,54,55,6221
Dynamucal systems (diffusion m) 1221,1233
Dyson—Schmuidt method 32,335
Effective medium approximation 2423
Effective number of independent vanables 131,132,1332,24,
421,541,56
Einstein relation
response to an external bias 433,5,622,634,app E
theorem on electrical networks 221,2421,621,632,app D
Electrical networks 221,2423,621,632,app D
Field theory and Feynman diagrams 4 2
Flory's approximation 1222,133,4212
Fluctuation—disstpation 23,52, app E
Fluctuations 211,212,3122,313,3322,3341,3352
Fokker—Planck equation 23,3332,335,422
Forces (random field of) 214,33, 4
Fractals 122,1333,221,4121,6
Frequency dependent mobility, see Mobility
Green function method 31,422
Hotbonds 621,632
Hydrodynamics (anomalous diffusion ) 1234, 132, 4121,
4322
Input impedance 221,632
Intermuttency 1233,4121
Ionic conductors 542
Ising model
crticality 134,533
random field 336,3371,3372
spin glass 4122
Kesten’s vanable 3332

Kramers—Kromg relations 221, 54
Kramers problem (see also Arrhenws) 3112
Langevin equations 23,331,3333,335,41,app E
Levy fights 122,1333,3341
Levy laws 12,334,56,app B
Localization 3322,335,623
Loganthmic corrections to normal diffusion 122, 1231, 132,
133,241,432, app B
Loganthmic diffusion 332,4122,4323,6221
Masses and springs 222
Master equation 211,23
Mobility 5,6222,6341
Nowse (1/f) 4122
Nonhnear response 134,3373,433,53,54,55,622,6233,
6341
Percolatton 2422,63
continuous~ 631
Permeability
hydrodynamic 132,2423,56,634,app C
magnetic 2423,3371
Permittwvity 2423
Perturbative expansion 2422,42
Phonons 222
Photoconductivity 543
Polymers
adsorption 1222
diffuston on 621
heteropolymers 337
long loops 6221
radius of gyration 133
Porous media 132,56,634
Potential 214,33,4122,4323
Probability of first return to the ongn 11,1232,1234,633,
app A,app B3
Probability of presence at the onigm  1333,212,222,32,335,
61
Quenched disorder 211,24,32,33,41,55
Rare events (see also Asymptotic diffusion front, Broad
distnibution) 3333,336,55,623
Relaxation properties 212,335,3371,4122
Renormalization group
ideas 11,134,14,4223,4311,531
techmque 43
Rephca tnck 2422,4224
Scahing region 11,212,312,334,4123,app A,B,C
Self-averagng 211,212,3113,3122,313,335,4323
Self-avoiding walks, see Polymers, Flory’s approximation
Steady state 213,311
Stochastic calculus (order prescnption) 23,3332,335
Stratified medium 132, app C
Stress—strain relation 3373
Transients 221,212,313,3332,3342,52
Trapping (anomalous) 123,241,32,33,54,55,56,633
Turbulent diffusion 4121
Veloaty 212,3113,3122,3312,423,433



