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Abstract 
The subject of this paper is the evolution of Browman particles m disordered environments The "Ariadne's clew" we follow is understanding of 

the general statistical mechanisms which may generate "anomalous" (non-Brownlan) diffusion laws, this allows us to develop simple arguments to 
obtain a qualitative (but often qmte accurate) picture of most situations Several analytical techniques - such as the Green function formalism and 
renormahzatlon group methods-  are also exposed Care is devoted to the problem of sample to sample fluctuations, particularly acute here We 
consider the specific effects of a bias on anomalous diffusion, and discuss the generahzat~ons of Einstein's relation m the presence of disorder An 
effort is made to illustrate the theoreucal models by describing many physical situations where anomalous d~ffuslon laws have been-  or could 
be - observed 
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I n t r o d u c t i o n  

This article deals with Brownian motion (classical diffusion) in lnhomogeneous media It mainly 
concentrates on cases in which the inhomogeneities can be modelled as a quenched disorder on the 
local hopping rates ("geometrical disorder" arising in fractal structures as the percolation network is 
also briefly considered, in chapter 6) 

Besides the observation that Brownian motion is one of the classical and best understood problems 
of physics and that studying its behaviour in the presence of disorder is quite natural, there are several 
physical phenomena motivating this study. These are mainly transport processes, e g. the diffusion of a 
tracer in lnhomogeneous hydrodynamic flows under the combined action of molecular diffusion and 
convection along the flow lines (porous media, section 5 6, turbulent flow, section 4 1 2 1, array of 
convection rolls section 1.2.3 4), or the diffusion of a charge carrier (electron, hole, ion) in a conductor 
with impurities in regimes where conduction can be modelled as a classical process involving 
independent carriers (sections 5.4.2 and 5.4 3) 

Another type of motivation, perhaps more remote, has to do with relaxation properties of disordered 
systems (e.g random field magnets or spin glasses) This is for at least two different reasons First, 
because important processes contributing to the overall dynamics--like domain wall or defect motion-- 
are diffusion processes (see section 3.3.7). Second, because relaxation can be traced back to the 
diffusion properties in the configuration space of the system, which is indeed known to have a 
complicated structure for, e g ,  spin glasses. While the study of a random walk in a disordered energy 
landscape (section 4 1.2.2) is certainly a very crude caricature of such a process, it can be a first, 
question raising attempt to deal with the effect of disorder on dynamical properties 

While this article is primarily a theoretical one, an effort will be made to motivate the models by 
discussing in some detail several physical situations and experiments 

The disorder can have two kinds of effects on diffusion properties" 
- I t  may affect only the value of the transport coefficients (velocity, diffusion constant, etc.) as 
compared to the ordered system, 
- or it may alter in various ways the very laws of Brownlan motion (e g. the mean-square position may 
no longer increase linearly in time at large times). 

We shall be mainly concerned here with "anomalous diffusion" phenomena, where the second kind 
of effect takes place Since the usual laws of Brownlan motion result from the central limit theorem of 
probability theory, the usual form of the latter has to fail whenever anomalous diffusion occurs. As will 
be illustrated at length in chapter 1, this can be due to the presence of either "broad distributions" (with 
diverging first or second moment) or of "long-range" correlations These statistical mechanisms can be 
present a priori in the problem at hand for some underlying physical reason (e g long-range 
correlations in the velocity field of a turbulent flow) or, most interestingly, they can be induced by the 
dynamics itself (see, e.g., section 3 3). It is one of the main themes of this article to unveil the presence 
of one (or both) of these mechanisms in all the models and physical situations described Identifying 
these statistical mechanisms provides us with a unified framework; this is indeed most useful both for 
model building (when looking for the physical origin of some observed anomalous diffusion) and for 
analyzing models without resorting to ponderous theoretical apparatus. 

Such situations, in which the disorder has such strong consequences, also require specific techniques. 
In particular, all mean-field types of approach (e g effective-medium approximations) which attempt to 
replace the disordered system by an equivalent ordered one following some averaging technique, can 
only fail when anomalous diffusion takes place Indeed, viewing in the usual way the large-time limit of 



132 J -P Bouchaud and A Georges, Anomalous dtffuslon In dtsordered media 

a random walk as a critical phenomenon, it appears that anomalous diffusion does correspond to 
departure from mean-field behavlour" a non-trivial fixed point appears, corresponding to a non- 
Gausslan central limit theorem (sections 4 2 2 3 and 4.3.1). Besides, as for any physical effect specific of 
disorder, attention should be paid to the question of ensemble averaging and of sample to sample 
fluctuations, random walks in random media provide a remarkable example of problems in which both 
fixed environment and disorder-averaged properties have a direct physical meaning (corresponding to 
the study of an initial distribution of walkers Initially concentrated or spread out over the sample, 
respectively) For these reasons, among others, diffusion in disordered media provides an interesting 
test field for methods in the theory of disordered systems 

In addition to the general tools of probability theory, several more specific analytic techniques will be 
rewewed in some detail in this article This encompasses mainly Green function and steady-state 
methods in one dimension (where a number of exact results can be obtained) and renormahzation 
group methods in higher-dimensional cases The probablhstlc meaning of the latter will be emphasized. 

As the list of references testifies, diffusion In inhomogeneous media has been the subject of 
numerous works in the past ten years and is still quite an active field Two review articles have recently 
appeared [G12, G13] and the present one is meant to be complementary to both, with very hmlted 
overlap The one by Havhn and Ben Avraham [G12] concentrates on fractal structures rather than on 
quenched disorder (with relative weights roughly reverted as compared to the present paper), and the 
article by Haus and Kehr [G13] focusses on situations in which diffusion is normal. An older review 
article by Alexander et al [G10] dealt only with the case of symmetric random barriers an one 
dimension Most analytical methods (like the Green function and steady-state techniques of chapter 3 
for the general asymmetric case in one dimension, and the renormahzatlon group methods of chapter 4) 
have never been reviewed. Besides, the present amcle contains new results which have not been 
published elsewhere It is also intended to discuss several physical motivations and experiments, which 
has not been attempted before 

The present paper should thus not be considered as a review article in the usual sense It is intended 
to provide an original view of the field in a unified language, and as such certainly suffers from 
numerous omissions The following topics in particular will dehberately not be addressed: 
- m o s t  situations in which the lnhomogenelties are neither modelled as quenched disorder nor as 
fractal-type (geometrical) disorder; this encompasses mainly the cases with "determtmsttc dtsorder" like 
diffusion on hierarchical structures or with hierarchical transition rates (see, e .g ,  [Hub85, Gro85, 
Pal85, Tei85, Bah87] and references therein), or diffusion in the phase space of dynamical systems (with 
the exception of the Lorentz gas of section 1 2 2 1 and the intermittent system of section 1.2.3 3); these 
are subjects which by themselves would deserve an independent paper, 
- i n t e r a c t i o n s  among the diffusing particles are always neglected, 
- all problems in which the total probablhty is not conserved, hke, e.g., diffusion among infinitely deep 
traps (see [Don79, Gra82, Nie89]) or in the presence of chemical reactions; 
- t h e  effects of possible quantum mechamcal couplings between the diffusing particle and the im- 
purities, leading to entirely new physics, 
-finally, the paper is restricted to the diffusion of pomthke parttcles (maybe with the exception of 
dislocation motion m section 3.3.7 3); it would probably be premature to attempt a review of the still 
growing number of studies of the diffusion of hnes (polymer reptatlon, DNA chain in a gel, etc ) or 
interfaces (domain wall motion, etc.) in the presence of disorder and of the new effects (pinning, etc.) 
induced by the internal structure. 

Let us end this introduction by providing some guide to the reader through this article. It is divided 
m six chapters, the detailed contents of which can be found in the table of contents. It should be clear 
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from this table of contents that many sections can (and must) be bypassed in a first reading. Indeed, the 
paper is organized as a main "backbone", along which numerous illustrative physical examples branch 
off Smaller characters have been used to mark these sections Chapter 1 in particular is meant to be a 
general introduction to the main probabihstic concepts and mechanisms" the numerous examples it 
contains deal with anomalous diffusion but not with media with quenched disorder. The study of the 
latter begins with chapter 2 For the sake of convenience, an index can be found at the end of the 
article 

1. Statistical mechanisms. Broad distributions and long-range correlations 

"In fact. all eplstemologlc value of the theory of probablhty is 
based on th~s that large-scale random phenomena m their collectwe 
action create strict, non random regularity " 

B V Gnedenko and A N Kolmogorov, Limit Distributions for Sums 
of Independent Random Variables [G2] 

This chapter should be considered as a general introduction to the probabihstlc concepts that will be 
used throughout this article It is meant to illustrate the idea which pertains to all the problems 
discussed in this article, namely that anomalous diffusion phenomena correspond to physical instances 
in which the central hmit theorem (CLT) no longer holds m tts usual form. This idea is indeed useful In 
practice: Once the statistical mechanisms responsible for this unusual circumstance are identified, very 
simple statistical arguments (or even precise mathematical results) can often be used in order to 
understand how the resulting diffusion behaviour is modified. Several Illustrations will be given in this 
chapter Most of them do not deal, strictly speaking, with disordered media (except section 1 3 2); this 
IS the subject of the following chapters (2-6). 

In section 1.1, very elementary properties of random walks and Brownian motion are discussed 
These properties follow from the CLT in its usual form (see, e g ,  ref. [G1]), which applies in an 
overwhelming majority of cases, that is, provided the two following conditions are satisfied (stated here 
in a somewhat loose way, to be made precise later on) 

(1) The distribution of the summed random variables must not be "too broad" (a sufficient condition 
is, in particular, the finiteness of its second moment) 

(ii) These random variables must not be "long-range correlated". 
We study In the two following sections the situations in which one of these conditions is not satisfied, 

(i) in section 1.2, (n) in section 1.3, making use, whenever possible, of simple statistical reasonings. The 
first case, involving "broad" distributions, is well understood: The works of P. Levy and A Khlntchine 
in the 1930s [G1-G3] have shown how to extend the CLT to such situations A summary of these 
mathematical results is given in appendix B, while several physical illustrations are presented in the 
text No such general understanding is available in the case of strongly correlated random variables 
(section 1 3) This is indeed a very difficult question" a self-avoiding walk (polymer) or the physics of 
critical phenomena are examples of such a situation, as will be made clear in sections 1 3 3 and 1 3 4 

1.1. Random walks, normal dtffuswn and the central hmlt theorem 

Let us first consider the very simple one-dimensional example of a walker performing at each time n 
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a jump of length l n independently chosen at each time according to a given distribution p(1) Its position 
after N steps, i e at time t = Nr. IS the sum of N independent displacements, 

N 

x,= 7_, lo (11) 

Prowded the first two moments (1) a n d  (12) of p(l) are finite, the mean and the variance of the 
poSltlOn depend linearly on time, 

f ( ,=V t ,  X 7 . X  7=2Dt ,  (12)  

where the velocity and the diffusion constant are given by 

V= ( l ) / r ,  D = (2r)-X[(/2 ) - ( l ) 2 ]  (1 3) 

This is the well-known behaviour of (biased) Brownlan motion, which we shall call "normal 
diffusion" throughout this article We shall speak of "anomalous diffusion" (of "anomalous drift") 
whenever the variance of the position X t (its average) no longer increases linearly with time at large 
time 

A more precise characterization of the random walk (1.1) is provided by the CLT, which states that, 
when the above conditions are satisfied, the distribution of the position X t ("diffusion front") takes at 
large times a Gausslan (or "normal") form, 

u 2 

Probablhty{u 1 <_(X t - Vt)/2X/~t<_ b/2} t--~ " ~  e -e- d~ (1 4) 

u I 

Let us sketch an elementary derivation of this classical result in probablhty theory (see, for example, 
ref. [G1]) which, in this form, goes back to Laplace (1812) [G9] Up to a translation of the reference 
frame, one can always suppose that ( l )  = 0 X~ then behaves typically as N 1/2, and it is the distribution 
of the variable X , / V ~  which admits a limiting form This distribution reads 

Y f  ( X, _ N_,/2 ~ I. (1 5) 
• . .  [I p(l.)dt, a 

n = l  n = l  

Using an integral representation of the 6-function, this can be written as 

+0¢ 

i f  (f )N 2rr dk e 'kx/'/-~ dl p( l) e -lk"v-~ (1 6) 

This expression involves the Fourier transform (or "characteristic function")/~(k) of p(1) At large 
times, only the behavlour of p(k) close to k = 0  matters, since I p ( k ) ] -  1 Since 

p ( k / X / N )  N = [1 - 1 ( 1 2 ) k 2 / N  + O(N-3,2)IXN_~ e-U2>~2,'- (1  7 )  

the integration over k leads to the Gausslan form (1 4) 
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This derivation calls for several important remarks: 
(1) At large times, the limit distribution (14)  involves only the first two moments ( l )  and i/z) All 

further details of the structure of p(l) (higher-order moments, etc ) only contribute outside the scahng 
regton m which (14)  holds. Indeed, 

(n) the CLT only specifies the limit distribution within the scahng regton, where the variable 
(X, - Vt)/X/-fftt takes finite values, corresponding to typtcal values of X t. Outside this region, the hmlt 
distribution P(X,  t) will generally have tatls which are not described by (14). These tads can be called 
"non-universal", since they depend on all the details of the original distribution p(1). (The case where 
the jumps take the two values l, = -+ 1 with equal probability is a simple illustration of this point in this 
case the exact distribution is a binomial law). An explicit characterization of the difference between the 
limit distribution and a normal law for large but finite time is provided by the Chebyshev expansion in 
powers of 1/V5, which involves the higher-order moments of p(l) and is described m appendix B 

(nl) A natural question to be asked is to characterize all the distributions p(l) for which the limit 
distribution of the sum Xt conveniently rescaled is the normal law or, in other words, to identify the 
"attraction basin" of the normal law. Theorem 1 of appendix B answers this question completely. The 
finiteness of the second moment (I 2) IS in fact not a necessary condition As an example, the attraction 
basin of the normal law contains the dlstnbutlons p(l) decreasing as 1-3 for large l, for which 
(l 2) = +~ X~ is then typically of order tin t We shall see in the next section (12.2.1) a physical 
apphcatlon of this result 

(IV) Let us finally note that the large-time hmit for a random walk can be seen as a critical 
phenomenon. This is clear from the above remarks: small number of relevant parameters, universal 
scaling law for the limit distribution within a certain attraction basin, etc It is the inverse of the time t 
(or more precisely E, its conjugate parameter by Laplace transform) which plays the role of the distance 
T -  T c to the critical temperature. The typical position X, is to be interpreted as a correlation length 
~:(t) (diverging for normal diffusion with the mean-field exponent v = 1/2), and the distribution P(X,  t) 
as a correlation function (S(O)S(X))  r (see section 42.2.3 and table 4.1 for elaboration on this 
equivalence) 

The CLT can be readdy generalized to random walks on regular lattices of arbitrary dimenslonallty 
(see appendix A) Since only the vicinity of k = 0 is of any importance, as in the above derivation, the 
asymptotic form of P(X, t) keeps no trace of the underlying lattice structure In a suitably normalized 
basis of unit vectors, this asymptotic form is a simple d-dimensional generalization of (1.4), 

P(X, t) ~ (47rDt)-a/2 exp[-  (X - Vt)2/ 4 Dt] . (1.8) 

Some properties of random walks (distribution of first passage times, number of different sites 
visited, etc ) will play an important role in the following - as well as some analytical tools needed to 
derive them (master equation, generating functions, etc.) Since these are standard topics which can be 
found m several excellent books and review articles (e.g. refs [G5-G9]), they will not be further 
detailed here. Rather, for the sake of convenience, some of these properties and techniques are briefly 
presented in appendix A. 

The normal form of the CLT presented in this section applies provided the random variables which 
are summed satisfy the two conditions already mentioned at the beginning of this section (not too broad 
distribution or too long-ranged correlations). Anomalous diffusion arises whenever one of these 
condmons is not satisfied. This may of course result from some "ad hoc" hypothesis of the model at 
hand. But the physically most Interesting situations are those m which such "pathologms" are reduced 
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by the dynamics itself This is the case for almost all physical situations dealt with in the following. It is 
amusing, for example, to realize that a broad distribution is in fact induced in such a familiar problem 
as the one-dimensional unbiased Brownlan motion. Indeed, the distribution of the first return time to 
the origin decays as (cf appendix A) 

P~( t )~ t  -3'2 (for V=O) ,  (19)  

and P1 has an infinite mean value) This is at the origin of geometry-induced anomalous diffusion on 
comb-hke structures, as explained in section 1.2.3 (see also section 6 3 3) 

1 2 The central hmlt theorem for broad distributions and phystcal apphcattons 

"All these distribution laws, called stable, ( ) deserve the most 
serious attention It is probable that the scope of applied problems in 
which they play an essential role will become in due course rather 
wide '" 

BV Gnedenko and A N Kolmogorov lop Clt) 

1.2 1. Sums of  mdependent random variables; stable laws 
1 2 1 1 General theory The problem considered in this section is to 

distribution of the sum of mdependent random variables, 
characterize the hmIt 

N 

XN = E l , ,  (1 10) 
t / = l  

when the distribution p(l) is "broad" (that is, decreases more slowly than 1-3 for large l) 
This question is a classic in the theory of probablhty It has been answered by Levy and Khlntchlne 

[G3], who gave an exhaustive classification of the possible limit distributions, based on the requirement 
of stablhty under convolution This is beautifully reviewed and developed in Gnedenko and Kol- 
mogorov's book [G2] A summary of the most useful mathematical results is given In appendix B of this 
article. We give here a quahtatlve presentation of their meaning based on simple statistical arguments. 

Let us suppose that p(l) decreases for large l as l -(l+~') (with tz > 0 to allow normalization) Then: 
- F o r  0< /x  < 1, X u behaves typically as N ~/" (or as N ln N if p, = 1). Note that ( l )  IS Infinite m this 
case. and so is X N 
- For 1 </x < 2, ( l )  is finite and JfU = ( l )  N, while the difference between X u and )(U again behaves 
typically as N ~/~" (or as VN In N for/x = 2). Note that the variance X~ - Jf~ is still infinite 
- For # > 2, (l -~ ) is finite and this leads back to the situation of the previous section 

Stated more precisely the variable Z u = XN/N 1/~" for 0 < tz < 1 [or (X u - ( 1 ) N ) / N  t'" for 2 > tz > 1] 
has a limit distribution when N~o¢ ,  in the same sense as eq (1 4), namely 

u 2 

Prob(u I < ZN< U2) N----~ f L ¢(u) du (1 11) 
u 1 

The limit distributions L~, ¢ are defined by their characteristic functions [eq (B 8) of appendix B], 
they are called Levy (or "stable") laws o f  index tx Up to translations and dilatations, they are fully 
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characterized by the two parameters ~ and /3 ( 0< / z  <2 ,  -1---/3-< 1). The latter characterizes its 
degree of asymmetry [which depends on the relative frequency of occurrence of large positive and 
negative increments in the sum (1.10)]. More precisely, 

L 

1-/3 _ llm R ( - L )  f 1 +/3 1----R~) ' R(L) = p(1) dl (1.12) 

The value 13 = 0 is obtained when large positive and negative values of In occur with equal 
frequencies (which is the case in pamcular if p(1) is even) It corresponds to an even distribution 
L.,0(Z ), which has a simple expression as a Fourier transform, 

1 f elkZ_Clkl~ L~, o(Z) = ~ dk (1.13) 

The normal distribution (1.4) is recovered for/x = 2, while ~ = 1 leads to the Cauchy law, 

C 1 
L1 °(Z) - ,B" C 2 + Z 2 " (1 14) 

At the opposite, when the I n only take poSltlVe values, the value/3 = +1 is obtained, and L~, 1 is 
conveniently expressed as a Laplace transform, 

d + l Z C  

1 f sZ_C,s,~ L I(Z) - L~(Z) - 21n ds e 
d-ice 

(1 15) 

(L~,,1 vanishes outside [0, +~[ for 0 < ~ < 1). 
The stable laws L~,,~(Z) decrease as Z -(I+p') for large values of Z and their moments of order larger 

than or equal to/x are thus infinite. Their "basin of attraction" consists of those distributions p(l) that 
for large values of I behave in a way similar to L~,,~(Z) itself. (Theorem 5a of appendix B characterizes 
this basin in a precise way ) This is to be contrasted with the normal law, which attracts all the 
distributions p(1) decreasing at least as fast as 1-3. Its attraction basin is thus very much larger; this is of 
course the deep reason for its ubiquity in nature. Figure 1 1 intends to give a pictorial view of the 
structure of these attraction basins. 

Several properties of stable laws (moments, asymptotic behavlour, series expansions, etc.) are 
summarized in the third section of appendix B. 

1 2 1 2 Stattsttcal mterpretatton The behavlour of the sum X N given above can be quahtatlvely 
understood in a very simple way. Let us ask what is the largest value l¢(N) encountered among the N 
terms of the sum (1.10). lc(N) can be estimated by writing 

oo 

N f p(l) dl~-l .  
Ie(N) 

(1 16) 
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Fig 1 1 An amst's view of the partition of the 'space of probablhty dlStrlbutmns" into basins of attractmn of the different Levy laws Lv ~ Note 
the predominance of the Gausslan (p~ = 2) basin of attraction 

This criterion *) means that a value larger than l~(N) occurred at most once m N trials This leads to 

/c(N) ~ N 1/u , N---)zc (1 17) 

For a large but finite number N of trials, the value of X N is msensmve to events with 1 >>/c(N); the full 
dlstnbutmn p(l) can thus be cut off at l - / c ( N )  [since the region l >> lc(N) is not sampled] Thus 

- For 0 < ~ -< 1, the typical value of X N can be estimated by computing the mean value of the sum 
(1.10) with this cut off "effective" distribution, 

l c 

XN-Nf Ip(l) d l~{  N(NI'")i-"=Nt/~'NlnN (/~ : 1) ( #  < 1), 

- For 1 < ~ < 2, the typical value of the difference X N - XN iS estimated by 

(1 18) 

l c 

f 2-" = (X N - X N ) - - N  (1 - ( l ) )2p ( l )d l - [N ln  N 
( ~ < 2 ) ,  
( #  =2)  (1 19) 

- F o r / ~  > 2, the integral in (1 19) converges when l c---) % and one recovers a purely hnear dependence 
on N 

From this simple reasoning, one sees that, when/~ < 2, the typical value of the sum X u is dominated 
by its largest term lc(N). The sum X u thus has a mamfest self-stmtlar nature (the whole sum resembles 
one single term) 

1 2 2 "Levy flights" and phystcal apphcattons 
When the l, denote  the lengths of successwe jumps performed at time steps t = m-, (1 10) provides a natural  generahzat lon of 

Browman motion (see, e g ,  refs [G9, Blu86, Sh187] and references therein) The typical t ime dependence of the posmon of such 
"Levy flights" ts faster than for normal  Brownlan motion (and even than for a balhstlc motion for # < 1) From the above 

*' More precisely the probablhtv that the largest number chosen in N trials is l reads Np(l)[f~t) c p(l)dl] ~ ~, whtch IS maximal (N-~c)  for 
I ~ N  ~ 
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Fig 1 2 A typical Levy flight (from [Blu89]) Note that longer and 
longer steps are encountered as time goes on, so that the set of visited 
points IS a fractal 

Fig 1 3 Slnafs bilhard on a square lattice A classical particle 
evolves among perfectly reflecting circles This dynamical system is 
highly chaotic, nevertheless, due to the nearly tangential trajectories 
such as the one depicted above, the velocity autocorrelation function 
decays algebraically 

statistical discussion, one sees that longer and longer jumps are encountered as time evolves, as depicted in fig 1 2 Since the 
volume occupied by the walk is related to its "mass" (1 e the number of steps) by g df = N, a Levy flight is a fractal of dimension 
/z (see [Man82]) We now describe some physical applications of Levy flights, m which the broadness of the &stributxon p(l) is 
&ctated by the physical nature of the problem at hand For a very recent application of Levy flights to &ffuslon m elongated 
mlcelles, see [Ott90] 

1 2 2 1 Geometrically mduced anomalous diffusion m some Lorentz gases Let us consider a Lorentz gas m which a particle Is 
reflected by spherical obstacles centred at the nodes of a hypercublc lattice ("Slnafs bdhard" [Sm70]) As depicted in fig 1 3, 
there exist arb,tranly long paths along which the particle can move freely, without collisions (the "horizon" is mfimte) The 
distribution of the length of these paths can be estimated on simple geometrical grounds [Bou85, Zac86], 

p ( l ) - ( 1 - R ) / l  3, l o ~ ,  (120) 

where R is the radms of the spheres, the lattice spacing being normahzed to 2 (for R = 1 the spheres come into contact) Diffusion 
* )  , ,  , ,  

In this bllhard can thus be modelled as a Levy flight with the marginal value o f / z  = 2, which leads to a typical time 
dependence of the squared position X~ ~ t In t This behavlour was first suggested by Le Doussal and one of the authors [Bou85] 
and Zacherl et al [Zac86] and appears to be compatible with numerical simulations This Levy flight analysis also suggests that 
the diffusion front should remain Gausslan for this problem 

In fact, for very small obstacles (R--~0), the distribution (1 20) only applies to very long paths l,> l* with l * - R  -i For 
shorter paths, one gets [Bou85] 

p(l ) -1-512,  l<~l * (121) 

A transient regime with X~ ~ t 4/3 should thus be observed for t ~< t c - R-3/2 before the asymptotic regime X~ - t In t is reached 
If the lattice structure is changed, for example to a triangular one, with sufficxently large radms R, these long colhslonless 

trajectories no longer exist (the horizon becomes finite), and it has been proven xn this case that diffusion becomes normal 
[Sm80] One should note, however, that there exist bdhards with finite horizon in which diffusion is nevertheless anomalous, due 
to complex long-range correlations between successive lumps (see, for example, [Dou87] for a discussion and references on the 
diffusion properties of bdllards) 

1 2 2 2 Polymer adsorption and self-avoiding Levy flights The structure of an adsorbed polymer is shown m fig 1 4 it Is 
made of pomts m &rect contact with an attractive wall, separated by large loops in the bulk The main point is that the 

*~ This is of course only a rough approximation, since complicated correlations between successive lumps exist in this deterministic motion They 
are, however, very likely to be short ranged and thus will not change the time dependence of X, (see section 1 3) 
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Fig 1 4 Typical configuration of an adsorbed polymer right at the 
adsorption transition long loops dive into the bulk and induce a 
broad distribution of distances between (singly) occupied surface sites 

a. 

3 

5 
I I 1 2 ).4. 

Fig 1 5 The "phase diagram" of a self-avoiding Levy flight (SALF) 
(from [Boug7e] in Flory's approxxmatlon, see section 1 3 3) in the 
(d,/x) plane [d is the dimension of the wall, p~ is the exponent of the 
broad step size distribution 6(1) = l (1+~,>] (1) Usual SAW, (2) free 
random walk, (3) free Levy flight, (4) SALF, (5) collapsed The fact 
that the chain is still lsotropic at the transition with N* monomers on 
the wall, together with the value /z = S/v, means that one is in 
domain (3), hence the bound (1 24) 

&stnbutlon of the size of these loops decays as a power law [dGe82], reducing a broad distribution of distances between two 
consecutwe adsorbed monomers In other words, as emphasized in [Bou87e, 88b], the projection of the chain's conformation on 
the wall ts a self-avotdmg Levy fltght *) (two adsorbed monomers cannot occupy the same site) Just at the adsorptton threshold 
(1 e ,  when the attraction due to the wall is just sufficient to brad the chain), the step length dlsmbution reads 

p(1)_l-~+~>, (1 22) 

for l ~< N" and # = ck/v v is the exponent characterizing the end to end distance of a non-adsorbed chain (R ~ N ~, see section 
1 3 3 and table 1 2), and 4' the "crossover" exponent, defined, e g ,  by the number of adsorbed monomers at threshold, N* 

The phase diagram In the plane (/~, d) (where d is the &menslon of the wall) for a self-avoiding Levy flight (SALF) is shown 
in fig 1 5, where the diffusion exponent VSALV IS calculated within a Flory theory (see section 1 3 3 and table 1 2) As the chain at 
threshold ~s stdl isotrop~c, one has the self-consistent relation 

RI I _ N ~ _  (N't')VSALF , (1 23) 

leading to /'/SALE = / 2 / 4 '  = 1//* Checking on figure 1 5 this leads to an upper bound on 4', which reads m three dimensions 

( 3 = d + l )  

4'-<v (1 24) 

Numerical determinations [Ets82, Ish82, 83] of 4' yield 

4, = v = 0  59 

(For a review on this problem, see, e g ,  [Bou88c] ) 

* > More precisely, it is a "node" avoiding Levy flight and not a "'path" avoiding Levy flight, see [Ha185b, Lee87] 
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1.2.3. Anomalous &ffuston due to long wattmg times 

1 2.3.1. Contmuous nme random walks In this section we consider a random walk on a regular 
lattice, such that the particle has to wait for a time r on each site before performing the next jump. This 
waiting time IS a random variable independently chosen at each new jump according to a distribution 
if(r) (for simplicity r IS not correlated to the length of the jump l, which is distributed according to p(/);  
see appendix A for the general case). One can think of this problem as a diffusion among traps, but 
without forgetting that a given trapping time is not associated forever with a given site, but changes at 
each new visit (fig 1 6); disorder is thus introduced in this model in an "annealed" way [through qJ(r)] 
The corresponding "quenched" problem, in which to each site is associated a gtven trapping time 
(random from site to site), is more difficult and will be studied in chapter 2 (section 2 4.1). 

The "annealed" problem dealt with here IS called "continuous time random walk" (CTRW) in the 
literature. The theory of CTRWs for arbitrary ~0(r) has been extensively developed in the literature 
(see, e.g., [Mon65, G1, G7, G9]) A number of quantities [including P(X, t)] can be calculated exactly 
using generating function methods This is reviewed, for example, in ref [G13], and also, very briefly, 
in appendix A (section A 3) We show here how some of these results can be recovered through simple 
statistical reasoning, with emphasis on the anomalous diffusion behaviour arising when q,(r) IS "broad" 

Dtffuston behavtour Let N be the number of steps performed by the walker during the time t; the 
average of the a th  component of its position is thus given by 

X 2 l 2 = ( ~)N ( N - - ~ ) ,  (1.25) 

l 2 where ( ~ )  is the mean squared length of a jump, 

(12~ } =-- f 12,~p(l)ddl (1.26) 

( 

J 

Fig 1 6 Plctonal representation of a continuous time random walk (annealed disorder on wamng times) 
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(=a’ld on a hypercublc lattice with nearest-nelghbour Jumps) The total time t 1s simply the sum of the 
N waltmg times encountered, 

t=i7, (127) 
n=l 

It 1s thus a sum of independent random variables to which the results of section 1.2 1 can be applied 
One 1s thus led to dlstmgmsh two cases 

(1) Zf (7) zs fin&, then t behaves typically as t - N(t), and diffusion 1s thus normal at large times, 

Xt = 2D,,t with Daa = (1:) /2(~) (128) 

Comparing this expression with eq (1 3), one sees that the diffusion constant takes the same value as if 
the successive Jumps occurred at regularly separated times t = n(~) Indeed, the renewal theorem [Gl] 
states that, for this process, successive lumps occur, on average, at a constant rate (5-) -’ at large tzmes. 

(11) If, on the other hand, $(T) 1s a “broad” dlstnbutlon, 

I+@) = 7;7-(1+F) (7+ m) ) (1.29) 

with 0 < p 5 1 then (T) = SW and t behaves as 

t - TJP 

This leads to subdzffuszve behavlour [Mon73], 

(I 30) 

Note that, when rl, behaves as (1 29) with 1 < p < 2, this induces anomalous corrections to the normal 
large-time behavlour (1 28), namely, 

2D,,t + ctl” (l<j-K2), 
2D,,t+ctlnt (~=2), 

- 
while Xi -((l~)/(~))t+ct1’2 for j_~u>2 

(132) 

D#fuslon front An exphclt expression for the probabdlty density of the posltlon at time t, P(X, t) can be obtamed m the 
large-time hnut [with the mltlal conchtlon P(X, t = 0) = S(X)] Th IS can be obtamed [Ba187] from the general expresslon of Its 
Founer-Laplace transform for general $(T) ( see appendix A) We present here an alternatlve denvatlon, closer m spirit to the 
above statlstlcal analysis Indeed, P(X, t) can be expressed as a sum over all possible numbers of lumps, 

r 

P(X, t) = c P(X, N)P(N, t) , 
N=,, 

(133) 

where P(X, N) stands for the probability that the posItIon of the particle IS X, N Jumps having been performed, and P(N, t) 
stands for the probabdity chstrlbutlon of the number N of Jumps at a fixed time t When N 1s large, P(X, N) takes the Gaussian 
form (assummg Isotropy for slmphclty (Ii ) - I’), 

p(x, N) = (2pl’N)~d’2 e~X~&v 
(1 34) 
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When (z) is fimte, the hmltmg form of the distribution P(N, t) for large N ts centred around N = t~ (~'), therefore the main 
contribution to the sum (1 33) for X and t simultaneously large comes from the vicinity of N = t~ (~) and the asymptotic form of 
P(X, t) is thus simply obtained by substltutmg this value into (1 34) Thus, when ( r )  ts finite, not only the diffusion behavlour is 
normal but also the full hmxtlng form of the diffusion front, 

P(X, t)---~(4rrDt) -d:2 e x2/4ot D = 12/2('r) (I 35) 

This no longer applies when/z < 1, where the precise form of P(N. t) has to be used t being a sum of independent positive 
random variables, its limit distribution is obtained from section 1 2 1, as 

1 
P(t, N)-----* ~ 1/~ " N~  .toN J~ L.(t/r°N ) '  (1 36) 

where L is a stable law of index # with/3 = +1 Changing variables from Z = t/N ~ '~ to u = N / F  = Z TM, one obtains 

P(N. t) = ('ro/t)~f~(N('ro/t)~). f~(u) 1 -v+~:.l ~,~. =--  u L (u ) (1 37) 

Using the representation (B 22) of appendix B, one thus obtains the Laplace transform of P(N, t) in the form 

P(N, E) = "roE ~'-1 e -N('°e: (1 38) 

(wtth a redefinition of T 0 tO absorb constant factors) In the long-time limit, the sum (1 33) can be replaced by an integral, using 
(1 38), the Laplace transform P(X, E) of P(X, t) thus reads 

" "-' ! dN 7oE 
P(X, E ) -  (27r/Z)a, 2 ~ exp[-N(~'0E)"- xz/212N] (1 39) 

This integral can be expressed in terms of the modified Bessel function K 1 a.,. leading to the final expression *) [Ba187] 

P(X, E)= ro(TrlZ)-a/2[(V~/l)[X]('r,,E)"'"] 1 a/Z(roE)~'n/Z-XK~_a,z[(V~lX I/l)(roEF -']. # < 1 (1 40) 

The diffusion front is thus no longer a Gausstan for this problem when dfffuston is anomalous Nevertheless, a generalized 
central llmtt theorem still applies In the asymptotic hmlt Indeed, (1 40) means that P(X, t) takes the scaling form. 

P(X, t)--, 1%/ t ) ' y [ ( z 'o / l ) lX  I/tq , (1 41) 

where ~, = /z /2  is the diffusion exponent [the precise meaning being similar to eq (1 4) or (1 11)] The scaling function f(u) 
decays for large u (IXI ,> t ~) as 

f(u) -~1 e-"~ , 8 = 1/(1 - u) (1 42) 

(Power law prefactors have been omitted, this behavlour can be derived either from the explicit expression (1 40) or directly by 
the steepest descent method on the integral representation (1 33), using the behavlour of L,,(Z) near Z = 0 ) This stretched 
exponential decay of P(X, t) for ]XI-> t" with 6 = 1/(1 - u) will turn out to arise in a number of situations considered in the 
following (see chapter 5 for a general &scusslon of diffusion fronts) In fact, it stems from the fact that, within the analogy with 
critical phenomena discussed above, P(X, E) should be thought of as a correlation function, (1 42) then corresponds to a simple 
exponential decay of P(X, E) for [XIE" ,> 1 

An exphclt expression can be given for the scaling function f in one dimension, where K~_~, 2 = K~,_, has a simple form Then f 
is easily found to be 

f(u) = l lu I o~,,-) - , -  L~(lul )-=L(lul), d= 1, (1 43) 

where L is a stable law of Index v = # /2 , /3  = +1 (One checks, using eq (B 24), that a Gausslan is recovered for u = 1/2 ) 

*) This has recently been derived in [Ba187], following a different method Note, however, some mlspnnts m the final result of [Ba187], which 
does not have the correct scahng form (1 41) 
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Fig 1 7 "Comb-hke" structure the spikes behave as traps with a broad distribution of release rime, propomonal to the probablhty of first return of 
a one-&mens~onal random walk, indeed, the walker must return to the entry point, and then has a fimte probability to leave the sp~ke 

We now turn to three examples which can be analyzed as CTRWs with a broad distribution of 
waiting times induced by the motion ttself Several other physical applications will be described in the 
course of this article; in particular it will appear that random walks in a quenched random medium 
(which are a priori much more complex problems) can in some cases be "renormahzed" at large scales 
onto a much simpler CTRW model [Mac85, Bro89a,b] 

1.2 3 2 Dtffuston on comb-hke structures Let us consider the diffusion on the comb-like structure 
depicted in fig 1 7 The teeth of this comb behave as traps in which the particle stays for some time 
before continuing its random motion along the X-axis. Thus, for infinitely deep teeth (L = +~) the 
waiting time distribution g,(r) is simply the distribution of the first return time at the origin (the 
entrance of a tooth) of a one-dimensional Brownlan motion As already mentioned (cf also appendix 
A), It decays for large ~- as 

O(z) = P l ( r )~  r ~/2 (1 44) 

Thus, the motion along X can be described as a CTRW with/x = ~. The comb-like geometry thus 
induces anomalous diffusion along X, 

X t  ~ t 1/2 (1 45) 

This result, obtained here in a very simple way, has been recently derived by Weiss and Havhn [Wei86] 
using somewhat more sophisticated methods (see also ref [G12] for detailed studies of diffusion on 
combs, and ref [Ba187] for a numerical confirmation of the shape (1 43) of the diffusion front). 

Consider now the case of teeth with a finite depth L. The time required to explore a given tooth IS of 
order ~c - L2/Do (Do ts the "bare" diffusion coefficient along each tooth). For r ~> ~-¢, an exponential 
decay of Pj (~-) is recovered, and the average time spent m a tooth is thus 

7" L 

3 / 2 ~  g 

Hence, for t ~> % normal diffusion IS recovered, with a modified diffusion constant depending on L as 
D - I / L  

1 2 3 3 Anomalous dtffuston m an mtermatent dynamtcal system [Man80, Gel84] It ts well known that purely determlmstlc 
dynamical systems can g~ve rise to dlffuswe motmn, as a result of the chaotic nature of their dynamics A very simple example 
with a single degree of freedom X, ~s provided by a mapping of the form 

X,+, = f (X, ) ,  (1 46) 
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Fig 1 8 Intermment peno&c mapping X,+ 1 = f(X,) The representatwe point remains trapped m the "laminar" regions (channels) during a long 
period, which can be taken as random and &strlbuted accordmg to (1 52) ff the remjectmg regions are sufficiently chaotic 

where f has a discrete translation mvanance (fig 1 8), 

f (n  + x) = n + f ( x ) ,  for integer n ,  f ( - x )  = - f ( x )  (1 47) 

X, then follows a diffusion process between elementary cells of unit length centred on each integer n A Josephson junction 
subjected to a periodic potential V( , )  is an example of a physical system following (1 47), there X t stands for the phase ~p evolving 
accordmg to 

d ~ / d t  = FV(~o) (1 48) 

m the hmlt of large fnctlon The function f ( ~ ) = ~  + T A t V ( ~ )  thus satisfies (1 47) (chaos m Josephson junctions has been 
observed, e g ,  in [Hub80]) Gelsel and Thomae observed m [Ge184] that anomalous diffusion can arise as a result of the 
mtermtttent nature [Pom80] of the mapping f m the vicinity of the fixed points x = +- n Indeed, the dynamics of X t then conststs of 
long laminar sequences m a given cell, interrupted by chaotic bursts assocmted with transfer from one cell to another These 
laminar sequences can Induce a broad dlstnbuUon of waiting times in each cell The mapping considered m [Ge,84] ,s sketched in 
fig 1 8 In the netghbourhood of each integer, f is characterized by an exponent a, 

X,+~ = X, + aX'~ + (1 49) 

(here, for X,--->0 +) Each integer is thus a margmally stable fixed point, and the larger the exponent a Is the larger is the time 
spent by a trajectory m the narrow "vertex" close to the centre of each cell The detailed shape of f far from these regions ts of no 
importance for the following, and must only insure ergo&c remjectlon m the vertex * ~ Following [Ge184] the motion close to each 
fixed point can be approximated by the continuous time solution of (1 49), 

x ,  = [x '0  - °  - a(,~ - 1) t ]  " ~ ° - ' ~ ,  (1 50)  

from which one deduces the wa~tlng time r as a function of the pos,t~on where remjectlon takes place, 

r(Xo) = (X~o -° - 2°-~) /[a(a - 1)] (1 51) 

Thzs allows one to deduce the wattlng time &stnbutlon ~(r) from the (unknown) &stnbutlon p(Xo) of relnjectlon points, the 

• 7 Note that the particle can be relnlected on both sides of the vertex, one deals here w,th "'type III" mtermlttency 
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behavlour of ~(r) for large ~" only depends on the one of p close to X 0 = 0, assuming p ( X  o = 0)¢: 0, ~, (1 51) leads to 

~ ( r ) - r  (~ ~' # = - l / ( a - l )  (152) 

Intermlttency has thus induced a broad distribution of waiting times, and the resulting diffusion behavtour reads 

__ It ,  1<c~<2 ,  
X ~ -  t ! ln t ,  a = 2 ,  (1 53) 

[t- ' .  2v=l l (a-1) .a>2 

1 2 3 4 Experiments anomalous diffusion m a linear array o f  convection rolls [Pom89, Car88] Another physical example of 
anomalous diffusion due to trapping has been proposed recently by Pomeau, Pumlr and Young [Pom89] (see also [Shr87, 
Guy89]), in connectmn with an experiment of Cardoso and Tabehng [Car88] 

The problem of interest is the motion of a tracer particle in a one-dlmensmnal array of convection rolls (see fig 1 9) The 
particle is both convected along the flow lines and experiences molecular diffusion (Do), which allows "'jumps" between flow 
lines The basic observation, which will be discussed below, is that each roll acts as a trap with a release time distribution decaying 
as ~ , ( r ) -  r -(1+~} for r <<. L21D{~ (L is the diameter of the roll) Since different visits to a given roll lead to different diffusion 
histories, the total time t will again be the sum of independent, broadly distributed variables The number of visited rolls after a 
time t thus reads (from section 1 2 3 1) 

N -  t" 2 for/z < 1 (1 54) 

In order to understand the origin of the broad distribution and the value of #, it is convenient to view the flow lines as a 
discrete set, numbered from l = 1 (corresponding to the "edge" of the roll) to l = S (see fig 1 10) The particle thus makes a 
one-dimensional random walk "in t space", onto which the circular convective motion is superimposed The probability of leawng 
the roll is proportional to the probability of first return to the site t = 1, which, after m steps and for m 2 ¢ S reads Pl(m) ~ m - 3 ~ 2  

(see above, section 1 2 3 2) Now, if 0, represents the time needed to make a closed loop on the ith line, the total time spent by 
the partMe in the cell will be 

r = ~ 0,(1) (1 55) 
J = l  

Here, the boundary conditions imposed by the horizontal plates must be specified We shall assume that the velocity behaves, 
for small distances from the wall, as V(z) ~ Vo(z /L)  ~ /3 = 0 corresponds to "free" boundaries while/3 = 1 describes a solid, "no 
slip" boundary *) Flux conservation then imposes that the tth flow line is at a distance (I/S)J/(o+t)L from the horizontal plate, and 

k 

x 
Fig 1 9 One-dimensional array of convection rolls, defining a one- 
dimensional discrete lattice on which the tracer evolves 

1=3 
/ 

V(z)~z B 

,,. ~, . 1 = 2  

/ / / / / / / / / / / / / / / / /  . "1= ] 

Fig 1 10 Blow up of a part of a convection roll, showing the 
deformation of the flow hnes (which are taken as discrete here) near 
the sohd boundary Note that due to flux conservation the flow lines 
expand when the velocity is lower 

*) Other values of/3 might be considered, for example, if the plate is covered by a self-similar profile of adsorbed polymers [dGe85] 
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IS thus characterized by a transit time 0 , -  (L/Vo)(Sh)  t+:t++~ Now, the probablhty to be on the tth hne after/steps is rumply 

P(I, I) - 1  ~'++ e '+'' (1 56) 

The average transit time/~ hence depends on I, 

~- ~ O,P(t, ])+]-t+/2(t++~,, (1 57) 
t 

and thus* 

m 

r = E ~ - m  (~+z,]2'~+') (1 58) 
/=1 

This IS the basic physical result time and number of steps are not proportional to one another, except when/3 = O, indeed, the 
first "loops" take a very long time since the particle gets close to the wall where the velocity is vanishing To complete the 
argument and obtain #, one only needs to write 

+('c) dr = P,(m) dm , 

which yields p = (1 +/3)/(2 +/3) 
From this picture, not only the time dependence of the number of "invaded" rolls follows, but also the full diffusion front in 

terms of Levy laws The calculation was performed in section 1 2 3 1, where we have shown that (eq 1 43) 

1 
P(g, t)= ~ L:2(Igl/t ":2) (1 59) 

In particular, for fl = 1, # /2  = 1/3, m this case (see appendix B), the Levy law can be expressed in terms of a Bessel function and 
one finally obtains 

PCX, t) = ~ K,/3[lxr/Z/tm] , (1 60) 

which IS the result of [Pom89] (see also [Shr87, Guy89] [Note that (1 60) is an Airy function ] Thls expression reproduces quite 
well the experimental data of Cardoso and Tabehng (see fig 1 11) 

Note that it would be interesting to bias the tracer's motion by an external field, in order to probe the nonohnear response 
properties that should occur in this case (see chapter 5, in particular section 5 4) 

X 

E 

t_l O S  

¢ ~ IBIII 

0 1 2 

mr_ . 

Fig I 11 Rescaled experimental results [Car88] for the diffusion front compared with the theoretical prediction (1 59) C~ Cm.x = f~:3(Xt- ~'3) Note 
that there is no adjustable parameter to obtain the above fit 

*~ Note that there is a phymcal upper bound on r Zma X --(L/Vo)[VoL/Do] t~'12+a) 
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1 3 Long-range correlattons 

1 3 1 Generahzatton of  the CLT  to sums of  correlated random vartables 
When the second condition needed to establish the usual CLT is not fulfilled, that is, when the 

summed random variables are not independent, the analysis cannot be developed as generally and 
precisely as in the previous section (for recent results, see, e g ,  [Ebe86, Dav89]). 

It is a priori quite obvious that long-range correlations can modify the "normal" behavIour (think of 
the extreme case in which the N variables are ldentlcall), but that very short-range correlations should 
safely be ignored What we do need is thus a criterion of the relevance of the correlations 

1 3.1.1 Relevance of  the correlations Let us consider the sum of a set of random variables (l k), the 
correlation function of which, defined as 

C(n) = (l~l~+n) - (l~)(l~+n) , 

only depends upon the difference n (stationary process) *) Assuming for simplicity (l~,)= 0, the 
variance of X N = Ek=IN l~ reads 

N 

X N = N C ( O ) + 2  2 ( N - k ) C ( k )  (1 61) 
k = l  

Two cases must thus be considered. 
(1) N En= ~ C(n) converges when N---~ ~, that is, C(n) decays more raptdly than n -1 f o r  large n In this 

case 

X -N 2 C(n)+C(0  (1.62) 
n = l  

and thus X N still behaves typically as V~ ;  only the prefactor (the "diffusion constant") is modified by 
the correlations In this sense "short-range" correlations are wrelevant This IS of course the case when 
the correlations have a fimte range [for example when C(n) decays exponentially] but the criterion is 
much less restrictive Introduction of finite-range correlations in the Brownlan motion has been 
considered, for example, as an improved model of ideal polymer chains (Orr's model, see ref [G16], 
pp 31, 32). The range of those correlations is called the perststence length of the chain 

(n) If on the contrary correlations are "long ranged", 1.e, when C(n) decays as 1/n or more slowly 
[for example, if C(n) - n ', y < 1], then the typical behavlour of X N IS mo&fied by those correlations 
From eq (1.6) one obtains (replacing, for large N, the sum by an integral) 

N 

X ) - N  C ( n ) d n -  N I n N  ( y = l )  (163) 

"Diffusion" is thus enhanced by correlations, the typical value of X N is much larger than ~ The 
extreme case of perfect correlations (when all variables are equal) is described by y = 0, which gives 
back the expected "ballistic" result X N ~ N. 

* ~We assume that C(n) does not &splay asymptotic oscdlatJons which could mvahdate the following &scusszon 
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1.3.1.2. Stattsttcal mterpretanon: effecUve number of independent variables The previous criterion 
can be understood in simple statistical terms, thereby providing us with a heuristic tool which turns out 
to be quite useful to understand qualitatively many physical situations, as will be illustrated below 

The Integral of the correlation function 

N 

N,d(N) = ~ C(n)/((l 2) _ (/)2) (1.64) 
n = l  

is an estimate of the number of variables which, among the set of N chosen variables, statistically 
"resemble" a given one l 0 This is because ((lolk) - ( lo)(Ik)) /(( l  2) -- ( 0  2) measures the probability 
for I k to be "close" to l 0 One can thus rearrange the set {/k, 0-< k -< N} Into "families" of N,o(N ) 
similar variables. There are obviously 

Ne,(N ) - N/N,d(N ) 

such families, which can be considered as effecnvely stattsttcally mdependent This amounts to 
decomposing X N as 

Neff 

XN ~ N,d(N) ~ lk, (1.65) 
k = l  

where the new sum now has "normal" fluctuations. In other words, one "integrates out" the 
correlations by redefining new random vanables as "blocks" of old ones. From (1.64), one obtains the 
typical behaviour 

XN-- N, dvW-L.-- , (1.66) 

which gives back (1 62) and (1.63) since 

[ ~const i f y > l ,  

N,o(N)~In(N ) if y = 1, 

[ ~ N  ~-y i f y < l  
(1 67) 

1 3.1.3. Shape of the hmtt &stribution. When correlations are "short range" [with meaning (i) 
above], It is possible to prove that the limit distribution of the sum remains Gausslan, see, e g ,  [Ma85] 
This follows from the existence of a k z term when expanding the characteristic function in the proof of 
the CLT given above In the case of Markov processes, or more generally of processes with a 
fimte-range memory, transfer matnx techniques can be used to establish this result and study related 
questions (see, e g ,  refs [G1, G17]). 

However, long-range correlations do lead in general to hmlt distributions dewatmg from the usual 
Gausslan shape Examples are provided by the polymer problem (section 1 3 3), or the distribution of 
the magnetisatIon of a spin model at the critical point (section 1 3 4); see also the examples given in 
[Dav89]. In such cases, the limit distribution is expected to depend on the detailed structure of the 
correlations An elementary remark in this respect IS that the limit distribution indeed remains Gausslan 
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If the correlations have a Gausslan structure, i . e ,  when the distribution of X~, , X N reads 

P ( X  I , , X~)= (det C)"-' exp(-2 X, C,j 'Xj) 
q 

(1.68) 

This immediately follows from the properties of Gausslan integrals In the general case, we are not 
aware of any mathematical work providing a classification of the possible limit distributions 

Some universal features of the tads of the hmlt distributions of the position in a number of diffusion 
problems considered in the following, will be pointed out in section 5 3 2 They are closely related to 
the response of the walk to a small bias 

1 3 2. Geometrical correlattons and anomalous dtffUSlOn: the example of a layered medtum 
In this and the following two subsections, we shall present physical illustrations of the above 

statistical mechanism In the situations we consider, correlations are not introduced by hand into the 
model, but rather are dynamically generated by the process itself 

A simple example in which long-range temporal correlations induced by the dynamics lead to 
anomalous diffusion is that of a bldimenslonal layered medium represented in figure 1.12a Within each 
layer the velocity V(Z) is constant and directed along the layer In the following, V(Z) will be a 
random variable, only depending on the layer Z and wtthout any interlayer correlattons This model was 
first considered by Matheron and de Marslly [Mat80], to study diffusion in porous rocks exhibiting 
large-scale permeability- and thus velocity- fluctuations 

This is the first example of a disordered system encountered in this article: two statistical ensembles 
are involved, namely the distribution of {V(Z)} and the different walks (or thermal histories) for a 
given {V(Z)} The position of a walker at time t depends on both, and one should pay attention to this 
fact when discussing its statistical properties In a real experiment, one is in general Interested in the 
properties of walks for a given ("quenched") {V(Z)} In this section, we shall not discuss in detail the 
question of ensemble averaging, we only want to point out the statistical mechanism leading to an 
anomalous diffusion law, and to predict this law by a simple argument [Bou87c] Appendix C is devoted 
to a more detailed study of the diffusion behaviour and diffusion front of this model, for which several 
analytical results can be obtained 

1 3 2 1 The dlffuston behavtour The tranverse motion (with respect to the flow) is a usual Brownlan 
walk, characterized by Z 2 = 2D, t Each layer is thus visited a large number of times, the probability for 

-~ V,.2 r 

-~ Vul - _ - 

~Vl r 

_ , . V ~ _ l  - , 

(a) > X (b) (c) 

Fig 1 12 (a) Model of a two-&mensmnal stratified porous medmm, permeablhty fluctuations reduce a random &smbutlon of local flow velocity 
(b) Three-&menslonal analogue with channels of constant velomty (c) "Random Manhattan" lattme m two dimensions 
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the particle to be m the mmal layer after time t is simply 

P o ( t )  ~ ( D  ± t )  - 1 ' 2  • 

This means that of the order of V ~ ± t  different layers have been probed, each of them N , d ( t  ) ~ t / V D l t  

times Said differently, the one-dimensional motion along Z induces a temporal correlation of the 
pamcle velocity decaying as 

+ ~  

(X,=,)X,)-O-v/ff-ff-j t  ' % -  J v Z p ( v ) d V  (1 69) 
- c o  

(we consxder the problem m the reference frame m which (V)  = 0). 
The total displacement along X is simply the sum of the velocities seen by the walker According to 

the previous section, one thus has 

~ t  -- ~ ~ v / o l / 2  t 3/4 ' (1.70) 

which is (up to a numerical factor, see appendix C) the result obtained in [Mat80] for ~ (~22). this 
model exhibits correlatton-mduced hyperdtffuston. 

1 3 2 2 Five remarks 
(1) In the laboratory frame, we must obviously superimpose the convective motion X, = ( V ) t  on the previous hyperdlffuslon 

If, however, the average velocity (V) is not strictly parallel to the layers, diffusion is asymptotically normal, since the number of 
visited layers becomes of order t Diffusion Is also normal if the sample is finite in the z direction In both cases, however, the 
above behavlour holds for intermediate times 

(11)  If the velocity field is so strongly disordered that (V 2) - (V)2 = oo (if, for example, p(V) ~ V (1 ++,), V ~  ~), then diffusion 
is even more rap~d, 

f f - ~  (1 # 2) O(1,.u-1)/2t(l/~+l)12 < < 
t=l 

(hi) If the flow profile is not random, but a Polseullle flow, V(Z) ~ Z :z, or a shear flow, V(Z) ~ Z, then one obtains 

X , ~  J d Z V ( Z )  D~/2 t 1+/3,2 , (1 71) 

with/3 = 1 (shear flow) or/3 = 2 (Polseullle flow) 
(iv) One can generalize the problem to higher dlmenslonalltles and consider the geometry of figure 1 12b In this case the 

number of different "cells" probed by the parhcle is t/ln t (see appendix A) and the resulting diffusion behavlour IS thus 

X~ - tin t (1 72) 

(v) One may also consider, following Redner [Red89, Bou89f], an lsotroplc version of the above model which, in two 
dimensions, Is defined through 

V,(x, z) =- V~(z) random, Vz(x, z) =- V~(x) random (1 73a) 

("random Manhattan" velocity field, see fig 1 12c) Assuming R ~ t ", one has 

(Vx(O)V,(t)) = (v~(o)vz(t)) ~ t -~ , 

and hence, using (1 63), 

R - t " - t  1-'/2 or v = 2  (1 73b) 
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1.3 3 Memory effects and long-range correlations, new mstghts mto the Flory approach to polymers 
Self-avoiding walks (SAWs) faithfully model linear polymers in a good solvent [G16-G18], that is 

when the attractive part of the interaction is screened out and only the strongly repulsive hard core 
must be taken into account In three dimensions, for example, the self-avoiding constraint makes the 
chain "swell" the end to end distance (or the gyration radius) follows, as a function of the number of 
monomers N, a "hyperdlffuswe" law, 

R - N " ,  v>_ 1 (174) 

Long before the identification of this problem with the critical behaviour of a n-component spin model 
in the hmlt n--~ 0 [dGe72], Flory did propose [G15, Fls69] an apprommate formula for v, which turns 
out to be remarkably accurate Flory's approach has been extended to a host of other problems, and is 
very often successful Nevertheless, the very method of Flory has often been described as dl founded, 
and its success fortuitous The aim of this subsection is to show how Flory's method can in fact be 
understood in statistical terms, as a self-consistent approach to a problem in which long-range 
correlations play a dominant role 

1 3.3 1 Flory's approxtmatton: the conventtonal picture The usual way to establish Flory's formula 
is to estimate the different contributions to the "free energy" of a chain of N monomers and size R, and 
then to find the optimal size minimizing this free energy 
- One thus considers the repulsive energy coming from the hard core repulsion, and thus proportional 
to the number of contacts within the chain A mean field estimate of the latter is simply the product of 
the number of monomers times the average density, 

Frep = kTadNZR-~ (1 75) 

(a is a typical monomer size) This term obviously favours large values of R and thus swelling of the 
chain 
- T h i s  swelhng is limited by an entropic factor which expresses the fact that there are much fewer 
stretched configurations than typical ones This entropy reads 

S = k In N(R,  N ) ,  (1 76) 

where ?¢'(R, N) is taken to be the total number of conformations of the free cham ?¢(R, N ) =  
zNpo(R, N), z being the lattice coordination number, and Po(R, N) the Gaussian distribution associated 
with the free walk 

The total free energy F = E r e  p - TS thus reads 

F d N2 R2 
k---T = a - ~  + -aT N -  N ln z , (177) 

which, upon minimization, yields 

R = a N  ~ , v= 3/(d + 2) (178) 

This value of v IS the Flory approximant. It is exact in d = 1 (R = N trivially), and in d = 2 (v = 3/4 
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Table 1 1 

Exponent v for hnear polymers 

" d = l + e "  

[Sta82] d = 2 d = 3 d = 4 - E 

"exact" 1 - e /2  3/4 0 588 1/2 + e / 16 
Flory (13 = 1, upper bound 9) 1 - e/3 3/4 3/5 1/2 + E/12 

lower bound 9 (13 = i / 2 )  4 / 5 - 4 E / 2 5  2/3 4/7 1 / 2 +  e/16 
3 = v 1 -  E/2 0 707 0 571 1 / 2 +  E/16 
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from conformal lnvanance [Nle82]); it predicts d e = 4 as the upper critical dimension above which the 
self-avoiding constraint is irrelevant (v = 1/2) It is remarkably precise in d = 3 b'Flory =0.6, which is 
2% off the theoretical [LEG85] and experimental [Cot80] values v = 0 588. .  Its e = 4 - d expansion 
does, however, not reproduce the correct result [dGe72] (table 1.1) 

Numerous authors have nevertheless underlined some weak points in the above argument. 
(a) Both terms (N2/R ~ and R2/N) are grossly overestimated compared to their actual value for the 

self-avoiding walk (for example, the estimate N2/R d assumes no correlations between monomers--but 
obwously the interactions correlate them in such a way as to reduce the number of intersections). De 
Gennes [G16] argues that the two errors fortuitously cancel to yield a reasonable value for v (see fig. 
1 13), making improvement very delicate since the balance between the two terms should not be 
ruined. 

(b) Flory's equilibrium free energy is found to behave as - N l n  z + N 2~-1, whereas the true free 
energy can be written as - N  In E + (3' - 1) In N. (See below for the interpretation of the exponent 3'.) 
Hence, the minimization procedure concerns subdominant terms (which are not pre&cted correctly at 

F ~ 

N ~ N~)F 

N 2 

-N l, z - - ' "  

II R°EF'' 

J 
"~N2 ~F-I 

R 

Fig 1 13 The success of Flory's approximation Is usually understood as illustrated both parts of the free energy (1 77) are overestimated, but their 
intersection happens to be close to the exact value 
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the end), although Flory's approach is not able to account for the dominant term [dC170]. Furthermore, 
the subdomlnant term N 2~' 1 has not the correct sign [dC170] 

Many other works (which we shall not discuss here though some are of great interest) try to explain 
the reasons for this apparently undue success [G17, Edw65, Dek87] The interpretation we propose 
below is satisfying because it nowhere involves a "free energy" concept, but is entirely based on a 
statistical reasoning 

1 3 3.2 Flory approxlmauon: a stausucal ptcture [Bou89c] The physical image that we promote is to 
consider a polymer as a random walk with elementary steps exhibiting long-range correlations, Induced 
by the self-avoiding constraint and thus by the past "track" of the chain itself. This suggests a natural 
way to construct those correlations" first, one should notice that the self-avoiding constraint changes the 
large-scale structure of the walk, but that at small length scales the walk locally behaves as a random 
walk" local constraints are "irrelevant" (This is well illustrated by the fact that K-tolerant walks - walks 
such that Kth order contacts are al lowed- have the same large-scale structure as truly self-avoiding 
walks; see also [Dek87] ) We shall thus define two types of self-intersections: local self-intersections and 
long-range self-intersections, only the latter are responsible for the long-range "transmission" of the 
correlations and thus of the large-scale non-Brownlan character of the walk. 

We thus view the nth displacement as completely random except when this nth monomer makes a 
"long-range self-Intersection" The integral of the correlation function between displacements, 

N 

f N N,o= C(n) d n = E A x o A x n  (179) 
/7 

(the bar stands for an average over starting points, or configurations) can be written as 

AXll Ax n + ~ Ax,I Ax/7 (1 80) 
l o n g - r a n g e  f r e e  

c o n t a c t s  

The "free" part averages to zero since the displacements in this sum are supposed to be uncorrelated 
(A weaker statement might be more correct: in this picture, the "free" part contributes in a 
subdomlnant way to N.a ) If the number of long-range contacts is N c, the first part in the sum contains 
N c terms and is thus expected to scale as 

N,d ~ E AX 0 Ax. ~ N~, (1.81) 
l o n g - r a n g e  

c o n t a c t s  

where the exponent 13 measures "how correlated" these displacements are"/3 = 1 corresponds to perfect 
transmission of the correlations at the contact point More generally, one expects (1 81) to be bounded 
from below by Brownlan behavlour and from above by the balhstlc one, 

1 _<3< 1 (1 82) 2 - -  • 

Now, the end to end radius of the polymer is a sum of correlated variables, which thus scales as 

R - N,d (1 83) 
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Hence R = N ~ = ~(rNc~N It is reasonable to estimate the number of long-range contacts in the mean 
field way, as 

N c ~ N 2 / N  ~d . (1 84) 

This IS much smaller than N If v > 1/d ,  l e., if the chain is not collapsed; the real total number of 
contacts is, however, known to be N, but most of them are local contacts. Therefore, one obtains 

NV__ N(2-vd)3 /2+1/2  , 

o r  

v = (1 + 2/3)/(2 + d/3) (1.85) 

Without specifying the choice for/3, one observes that the correlation function C(n)  decays as n -y with 
y = 1 + / 3 ( v d  - 2). Correlations are relevant only If y -< 1 or v <- 2 / d ,  and in any case v -> 1/2. We thus 
find that the critical dimension above which correlations do not change the Brownlan character of the 
walk is d c = 4 independently of/3. Right at d = 4, correlations decay a s  n -1  and in this c a s e  Nld  ~ In N; 
logarithmic corrections appear naturally within this approach at the critical dimension while this is out 
of reach in the usual Flory argument 

Now, what IS the value to be given to/39 A "strong" correlation hypothesis corresponds to/3 = 1 
Equation (1.85) then gives v = 3 / ( d  + 2), which IS precisely Flory's formula (1.78). This suggests that 
VFtory might in fact be an upper  b o u n d  to v. This indeed seems to be the case (see table 1.1)./3 = 1/2, on 
the other hand, would yield a lower bound (which IS also obeyed by known results), 

v->4/(4 + d ) .  (1 86) 

A "self-consistent" choice 1S f l  = P, since it states that the sum in eq. (1.81) statistically behaves as the 
full sum of individual displacements. For fl = v, eq (1.85) reads 

v = 1 / V ~ .  (1.87) 

Note that, quite amazingly, this formula is exact for d = 4 - e and d = 1 + e! 
Now, the points we want to make appear clearly: 
(a) The Flory formula combines an exact result on sums of correlated random variables (eq. 1.63) 

with an approximate way of estimating the correlations, namely a "mean field" approximation of the 
number of long-range contacts (and not of the total number of them), and "strong" transmission of the 
correlations hypothesis. The Flory formula more naturally appears as one member of a whole family 
parametrlzed by the exponent 3, which in fact suggest bounds on v 

(b) The generalization to a large number of other problems is straightforward, without any need of 
constructing an elastic "free energy". The "recipe" is the following: One has to know the behavlour of 
(i) the sum of perfect ly  correlated variables of the type considered (for example, on a tortuous fractal, a 
minimal path along the structure of length s leads to a displacement R -  s ~ with a -< 1, see section 6.1) 
and (11) the sum of m d e p e n d e n t  random variables of the type considered, that is the value of the 
exponent v above the critical dimension, which we shall denote below by v 0. 
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Equation (1 85) will then be replaced by 

ot v 0 

R = N l d ( N / N l d  ) ( 1 . 8 8 )  

Application of this method yields "Flory formulae" (with the same way of estimating N c and with/3 = 1) 
to, e.g., self-avoiding Levy flights, self-avoiding surfaces, polymers on fractals, etc. Table 1 2 summar- 
izes the quantities of interest for these various problems 

One problem deserves special consideration: that of branched polymers for which a = 1 and 
v 0 = 1/4 We obtain for the exponent governing the size of a branched polymer 

v = 7 / ( 4 +  3d), (1 89) 

instead of the value proposed long ago by Isaacson and Lubensky [Isa80] (based on an uncontrolled 
"elastic" free energy), 

v = 5 / ( 4  + 2d)  

Our formula is also expected to be an upper bound (which is satisfied by all known results) Obviously it 
reproduces v = 1/4 for d c = 8 but contrarily to the previous one yields the exact result in d = 1 The 
corresponding conjectured lower bound (/3 -- ½) reads 

v ->8/ (8  + 3 d ) ,  (1 90) 

which again is satisfied by all known results (see table 1 2) 

Table 1 2 

Some  F lo ry - type  a p p r o x i m a t i o n s  and  lower bounds 

Self-avo,dmg Levy fltghts [dGe86]  

Dlstnbutlon of elementary step length q , ( l ) -  l c1+~,~ 

Value of  v 0 v o = 1//~ 
Value o f a  a = l l f / z > l a n d a = l / / z f o r a < l  

G e n e r a h z e d  Flory approximation (13 = 1) v = v o for  # < 1, v = (2/z - 1 ) / ( d #  - d + # )  f o r / z  > 1 

Self-avoldmg walks on fractals 
(d~ f racta l  d imens ion ,  d,  spectral &menslon, 2 spreading dimension, see secUon 6 1) 

Value of  v o v o = ds/2d f 
Value of  a a = [l/d r 
G e n e r a h z e d  F lory  a p p r o x i m a t i o n  (/3 = 1) vdf = ( 4 2  - d s ) / (2  + 2 d  - ds) [G12,  Bou89c ,  Aha89]  

Self-avoMmg mamfolds [Kan86] ,  

(internal dimension of the m a m f o l d  D )  

Value of  v 0 v o = 1 - D/2 ( l oga r i t hm for  D = 2) 
Value o f a  a = l  

G e n e r a h z e d  Flory approximation v = [2 + D(2/3 - 1 ) ] / ( 2  + d/3) 

Branched polymers 

d = 1  d = 2  d = 3  

" e x a c t "  1 0 6408 [Der82a]  1 /2  [Par81]  

Flory ( 3  = 1) 1 0 70 7 / 1 3  
lower bound 9 (/3 = 1 /2 )  8 /11  4 / 7  8 / 1 7  

Lubensky-Isaacson [Isa80] 5 / 6  5 / 8  1/2  

d = 8 - e  

1 /4  + 3 e / 1 1 8  [Lub79]  

1 / 4 + 3 e / 1 1 2  

1 / 4 + 3 e / 1 3 2  

1 /4  + e /80  
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We feel that more work should be done to estabhsh rigorously the bounds suggested here, which 
naturally emerge from the physical picture and methods that we propose This would at last settle the 
precise status of the "Flory approximation" 

1 3 3 3 Ltmttmg dtstrtbutton for the end to end &stance Once the "diffusion law" relating the average radms of gyration to 
the number of monomers is estabhshed, one would hke to go further and obtain the full probability distribution P(R, N) For 
large R and N, one expects that m the scahng regton R ~ N ~, P(R, N) takes a scaled, universal shape, of the form 

P(R, N)= N "df(R/N") , (1 91) 

independently of the microscopic detads of the model (generahzed CLT) Using the equwalence with the n = 0 ~b 4 field theory, 
the asymptotic hehaviour of flu) (both for u---)0 and for u >> 1) can be found One has [Fis66, dCl80, G16] 

f ( u ) = u  (~-'):~ for u ~ 0 ,  (1 92a) 

f (u)=u~'e  - : ,  6 = 1 / ( 1  - , , ) ,  o - = 6 ( 1 - y + v d - d / 2 )  (192b) 

The shape o f f  is sketched in fig 1 14 Equation (1 92a) shows that the probablhty for the last point of the polymer to lie very 
1 y close to the initial point is reduced by a factor N - as compared to the naive "mean field" prediction Po(R = a, N)~-(a/  

R) a ~ N -~d In other words, there are N x-v fewer self-avoiding polygons than self-avoiding walks with free ends (see the detaded 
discussion in ref [G16]) Note that it has been suggested in ref [G17] that in the sprat of a Flory approach, one should take 
7 = 2v Equation (1 92b) has already been encountered m section 1 2 3 1 (eq 1 42) and is closely related to the response of a 
SAW to an external bias, as will be extensively discussed in chapter 5 

1.3 4 Spm models at their crtttcal pomt 
As a last illustration of the physics of long-range correlations, we wish to present some features of 

spin models at criticality using the statistical language and tools mtroduced above (for early related 
ideas, see [Cas78]). 

As IS well known, the magnetization 

L d 

M=~S, 
1 = 1  

of a spin model on a d-dimensional lattice of size L a is the result of a competition between entropy 
(inducing disorder) and energy (acting to correlate the spins on large distances). At high temperature, 
the former dominates and correlations between spins are short ranged. One thus has (say for Islng spins 

~, f(u) 

Fig 1 14 

1) 

u 

Scahng function charactenzmg the hmlt distribution of the posmon P(R, N) for a polymer 
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S, = -1 )  In the whole high-temperature region 

L a 

M =  ~ S , - V ~  (1 93) 
t = l  

More precisely, the CLT applies in the usual Gausslan form, 

1 e x p ( _ M Z / 2 x L  d) , P(M, 

with a variance equal to the magnetic susceptibility On the contrary, in the low-temperature (pure) 
phase, perfect correlations are favoured and lead to a non-zero value of the correlation function at large 
separations, equal to the square of the remnant magnetization m, 

L d 

M =  ~ S , = L d m  + - V ~  (1 94) 
t = l  

In this phase, the ratio M / L  a has a non-vanishing hmlt for large L The distribution P(M, L)  for large 
L is essentially a Gaussian distribution centered at + m L  a (or - m L  d) 

Precisely at the critical temperature T c, the spin correlations decay algebraically, 

(S(O)S(r)) ~ r-¢d-2+') , 

and, according to section 1 3 1, the system can be pictured as Nef f "effectively independent" families of 
N,d perfectly correlated spins, with 

L 

r d-1 dr 
Nld(L d) = f rd-2+n -- L:-~ 

The fluctuations of the total magnetization are thus of order 

M =  ~ l d - -  (L~) ~ , (1 95) 

u = (d + 2 - rl)/2d # ½ (1 96) 

Thus, at the critical point, the total magnetization follows an anomalous power law as a function of the 
number of sites L a with an "anomalous diffusion exponent" v More precisely, it is the variable 
M/(Ld)  ~ which has a hmlt distribution for L ~  ~ at the critical temperature: 

P(M, L d) = L-a~f (M/L  d~) (1 97) 

The following information is available about the scaling function f for the Ising model (sometimes called 
the "block-spin" distribution in the framework of real-space renormalization group studies or of 
rigorous approaches) 

- In one dimension, an analytical expression due to Bruce [Bru81] can be found from the solution of the 
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model in a field, yielding 

f ( x )  = ½~3(x - 1) + 16(x + 1). 

-Numerical simulations by Binder [Bin81] show that f depends on the boundary conditions For free 
boundary conditions, its shape evolves from a double-peaked to a single-peaked structure when the 
dimension is increased from d = 2 to d = 3. Some approximate analytical treatments have been 
performed in [Bru79, Bru81] using Wilson's approximate recursion relations. Finally, some moments  of 
f are known in two dimensions, using conformal lnvarlance [Bur85] (in pamcular (M4)/ 
(M E) 2 = 1.33 instead of 3 for a Gausslan). 
- As we shall argue in section 5.3.3, the shape of the tatls of f (u )  only depends on the dimenslonahty 
and on the critical exponent at crltlcahty. This follows from the analysis of the response to a weak 
magnetic field, which can be shown on a general basis (section 5 3.3) to follow a non-hnear law, 

M ~ L d H  ~/(a-~) , (1 98) 

from which It follows that (u >> 1) 

- u  6 

f(u) = e  , t~ = 1/(1 - v) (1.99) 

(1 e., 6 = 4 for d = 4, ~ = 6 for d = 3 and 6 = 16 for d = 2), and that one has the well-known relation 
between the critical exponents 6 and 7 / ( M - H 1 / ~ ) ,  

6 = v / ( 1 -  v ) = ( d + 2 - r l ) / ( d - 2 + r l )  (1.100) 

These probablhstlc remarks concerning the critical state provide some insights on the nelghbourhood 
of T c, and m particular allow one to emphasize the statistical content of the scaling relations between 
critical exponents, defined conventionally by 

F =  L al T - T¢I 2 -"  , 

~=IT- TJ-V,h, 

x = I T  - L I  - '  , 

m =  I T -  L I  ~ • 

(1 101) 

For T close to T¢, one can picture the system as made up of regions of size ~ in the critical state There 
are ( L / ~ )  d such regions, which each contribute to the total free energy by an amount of order kT,  

F / k r =  Ld/~ d (1 102a) 

Hence the Josephson relation 

2 - a = ~h d . (1 102b) 

The typical size of the fluctuations of the total magnetization can be estimated as (T < T¢) 

M = (~d)~Ld~-d  ~ m ~ ~d(v-1) ; (1 103a) 
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this leads to the relation 

fl = d ~ h ( 1 -  u) (1.103b) 

Accordingly, the susceptlblhty to an external magnetic field is enhanced by correlations In the 
high-temperature phase, for example, the fluctuations of the total magnetization read 

(1 104a) 

Hence, from xT~ = 8MZlL d, one obtains y = Vthd(2v - 1), leading to 

7 ~ ~h( 2 - 7) (1 104b) 

Using (1 104) and (1 100), eq (1 103a) can be written as 

/3(8 - 1) = 3/ 

Making use of (1 102), this also reads 

~ + 2 / 3 + y = 2  

Equations (1.102)-(1 104) form the well-known set of relations between critical exponents, which have 
been recovered here within the framework of sums of random variables 

1 4 Concluston and mam points of chapter I 

In this chapter, we have tried to underhne two major ideas. 
(a) The breakdown of the canonical CLT and of the "mean field" value of the diffusion exponent 

can be due either to very large fluctuations (broad distributions) or to long-range correlations The most 
interesting situation occurs when those statistical pathologies are reduced by the dynamtcs of the 
problem itself, and not introduced ab lnltlO One should therefore look for possible mechanisms 
generating large fluctuations and/or strong correlations Once those mechanisms are identified, their 
consequences for the transport properties of the problem studied can be discussed using the simple tools 
developed in sections 1 2 1 and 1 3 1 It can happen that the identification of the mechanism suggests a 
self-consistent solution to the problem this has been encountered for polymers and should perhaps be 
dwelled upon further for spin models. 

More precise statements can be made using more sophisticated techniques, In the next chapters we 
shall present and develop some of them, trying as much as possible to discuss the results in the language 
introduced in this chapter 

(b) The concepts of universality classes, fixed points, scaling, which have emerged in the last twenty 
years within the framework of critical phenomena and the renormahzatlon group have a very deep 
statistical origin [Cas78], the theory of stable distributions, and in particular the central limit theorem, 
shows very pedagogically how the microscopic information is grinded and processed to extract very few 
"relevant" quantities, the remaining part of it being irremediably lost in the tails (recall the H-theorem, 
which relies on the same mechanism) The robustness of this mechanism is In fact what makes possible 
at all the description of large complex systems in terms of very few "macroscopic" parameters 
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While the theory of stable laws for uncorrelated variables is very well established, the case of 
correlated sums does not stand on equally systematic ground In a sense field theory and renormahza- 
tion group have handled this problem efficiently in the case of correlations generated by a Gibbs 
measure; those are perhaps the natural tools to explore this path further 

2. Diffusion on lattices with random hopping rates: introduction, related problems and simple results 

2 1 Introductton and basic quanttttes 

2.1.1 Random walks in quenched dtsordered medta 
The most natural model for a heterogeneous material in which the local transport coefficients and 

driving fields are highly complex and irregular is to consider a given sample as a particular statistical 
realization of an ensemble, constructed by randomly choosing those local quantities according to a 
certain probability distribution "Quenched" disorder means that those random quantities do not evolve 
wtth nme: this is usually the model considered to describe the dynamical properties of materials 
containing impurities, defects, or intrinsic randomness (amorphous systems), provided that the time 
scale of the observed dynamical property (e.g. the diffusion of a tracer or of a carrier) is mucl~ shorter 
than that of, e g ,  diffusion of the impurities, or more generally the "turnover" time of the disorder 
Many examples of such physical situations will be encountered in the following, conductivity of 
amorphous materials or of quasi-one-dimensional ionic conductors, dynamics of domain wall or 
dislocations, transport of a dye in porous materials (with or without flow), etc 

More generally, one can consider the dynamics of a complex system as the diffusion of its 
representative point in ItS tortuous phase space (chaotic dynamical system, configuration space of a spin 
glass, etc ) 

The models studied below are random walks on euclidean lattices with mhomogeneous transition 
rates Wnm from site m to site n (for diffusion on fractal lattices see chapter 6). If on the time scale of the 
experiment disorder evolves slowly, the physical problem amounts to considering a given configuration 
of hopping rates (Wnm) chosen once and for all with probablhty ffJ[(Wnm}]. One is then interested in the 
properties of random walks in this quenched environment It is crucial to realize that one must pay 
special attention to the definition of the various quantities of interest. It often happens that two 
equivalent ways of defining a physical quantity in an ordered medium no longer lead to the same result 
in the presence of disorder. In particular, one should carefully distinguish the following two averages" 
-Averages  over the different "thermal histories" (each one being defined by the succession of hops 
performed by the particle), the environment being fixed. Such averages will be denoted in the following 
of this article by an overbar" ( . )  
- Averages over the possible environments, according to the distribution ~b(Wnm). Such averages will be 
denoted by brackets: ( ( . ) ) .  

The position X, of a single walker is a random variable depending both on the thermal history (which 
we shall sometimes denote symbolically by ~/) and on the environment to = {W,,,} The latter being 
fixed, one can then obtain information on the statistical properties of Xt(r/; to) in the following ways" 

(1) One can study a packet of particles, all starting at t = 0 at the same tntttal stte no, but undergoing 
different thermal htstones The probablhty of presence on site n at time t, Pn(tlno, O) IS defined by the 
thermal average (a denotes the lattice spacing), 

f (tlno, o ) =  a[n - to)l, 
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and still depends on the environment It describes the shape of the packet at time t and obeys the 
following master equation 

ddt P.(t) = ~]m W"mPm( t ) - (~  Wm"P"(t)) , (2 1) 

with initial condition and normalization 

P~(t =OIno,O) = 6~., , P.(tln o, O) = 1 
n 

Introducing the local currents  Jnm = WmnP~(t) - W n m P m ( t ) ,  eq (2 1) can be written in the form of a 
conservation equation. 

d P . ( t ) + ~ J . m  0 (2 2) - -  z 

dt m 

(n) One can also study the time evolution of a packet of particles having some distribution of initial 
positions po(no). Equation (2 1) being a linear equation, the shape of the packet at time t IS given by 

p.(t) = ~ po(no)Pn(tlno, 0) (2.3) 
n l )  

An extreme case is the uniform distribution P0 = 1/N (N is the total number of sites) In this case one 
averages overall initial positions and it is clear that. provided the distribution O(Wnm ) IS translatlonally 
lnvarlant, this coincides with an average over environments, 

1 
-- ) U ~  (P~o +"(tlno' 0)) N ~ P"o+"(tln"' 0 ~ (2 4) 

where the r h s no longer depends on n o (2.4) is the distribution of the random variable X,(r;, o)) over 
both thermal histories and environments. 

One could also study other quantities such as the distribution of X,(r;, to) over environments for a 
single thermal history, etc. 

2 1 2. Charactertzatton of the dtffuston process 
2 1 2 1 Behavlour of the moments, fluctuauons The shape of the packets Pn(t[no, 0) and pn(t) are 

conveniently characterized by their moments, in particular the first one measures the position of its 
"centre of mass" and the variance gives an estimate of its spreading 

From P.(t[n o, 0). one defines the (asymptotic) veloctty and dtffuston tensor as 

V= !,m (d/dt)X,O 7, to), 

D ¢ = 1 !im (d/dt)[X]07, w)Xf(~l, w) - X~(TI, w)Xf(~l, ¢o)1 
(2 5) 

These quantities a priori still depend on the environment. However, in all the cases studied in the 
following in which diffusion is normal, it will turn out that they take, with probability one, a value 
independent of the specific environment chosen [and which is a function only of a few parameters 
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characterizing the distribution ~l(Wnm)] This is the so-called "self-averaging" property, which phys- 
icaUy rehes on the fact that at large times the whole configuration {(Wnm)} has been properly sampled 
Despite ItS clear physical origin, up to now this property has only been "rigorously" proven in a limited 
number of cases (see section 3.1 and [Asl89a]). However, as will be explained below, one should not 
conclude, even when this property holds, that at large time the full diffusion process no longer exhibits 
fluctuations with respect to the environment. 

When the effect of disorder is not dramatic, one expects a finite (1 e. non-zero and non-infinite) 
diffusion constant, together with a finite velocity if the process is biased; this will be called "normal 
diffusion" in the following All other situations will be called "anomalous", this encompasses 
non-linear time dependence of X t in the presence of a bias (global or local) and non-linear dependence 

of the spreading X " X  ~ -  --~X ~ We shall encounter situations in which these quantities follow 
non-Brownlan power laws as well as a more complicated time dependence than power laws 

The centre and width of an arbitrary packet pn(t) also define a velocity and diffusion constant, 

V [ p 0 ] = a h m  d ~ ,-~.~ ~ npn(t)' 

a d 
D,~[po ] = ~ !lm ~ n~ n#Pn(t ) - 2 n~pn(t) 

i i  n 
nt3pn(t)) 

(2 6a) 

For the same physical reason as above, these quantities no longer depend on the environment in 
general Furthermore, the self-averaging property for V in (2 5) implies that V[p0] in fact does not 
depend on the initial distribution: V[p0] = V, 

V[po]t + . . . .  ~ n ~ po(no)Pn(tlno, O) = ~ po(no) ~ nPn(tlno, O)~ lit. (2.6b) 
n n O n o n 

This is, however, not always the case [As189d, Dou89a] for the diffusion constant D[p0], which can be 
put in the form, 

a d 
D,~[po ] = D,~ + ~- !im ~ po(no)-fi-~ - ~, po(no)-fi-~ ~ po(no)n-~ , 

no no (2 6C) 

n---~ = ~ n~ Pn(tlno, 0). 
n 

The last term is the fluctuation of the centre of mass position, which in general does not vanish at large 
time, and depends a priori on the shape of the initial distribution po(no). In particular, for a uniform 
initial distribution po(no)= I/N,  D[p0] measures the spreading of the full distribution (Pn(tlno, 0)), 
and will for this reason be called Oav ("av" standing for "average", Day has been called "annealed 
diffusion constant" in [Dou89a], but it should not be confused with the diffusion constant of the 
annealed model): 

2 ( ) 
Dav a d ~ = -~ lim~ ~ (X'~X~, ) - ( X T ) ( X ~ )  . 

Four remarks 
- A s  is clear from (2.6c), the reason which allows Day to be different from D is the sample to sample 
fluctuation of the corrections to the leading behaviour of the thermal average X, When diffusion is 
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normal, this fluctuation turns out to exist only in one dimension and when a global bias exists [Dou89a] 
D,, = D in more than one dimension, when diffusion is normal Note that the fact that ( 2~ ) / ( X, )2 _ 1 
behaves at most as 1/t precisely guarantees the self-averaging property of the velocity, 
- O n e  can wonder whether D[p0] can have some continuous dependence on Po As pointed out in 
[Dou89a], for "reasonable P0", D and Dav are the only generic values. For a superposltlOn 
p6. + ( 1 -  p ) / N ,  one easily sees that D[po] = p2D + ( 1 -  p2)D.v [Dou89a] 
-D .~  could have some relevance to experiments, despite the fact that it Involves an average over 
environments Suppose that one performs a diffusion experiment in a system made up of one- 
dimensional channels, following in each one the diffusion of a concentlated packet (fig 2.1) Each 
channel being a different environment, one realizes an average over samples if one observes the packet 
with some low resolution This picture (fig 2 1) clearly illustrates why one has D < Da~, as IS clear from 
(2.6c) Furthermore, ergodlctty suggests that the histogram in time of the positions of a single particle 
for fixed r /and ~o should coincide with (P(X, t ) ) ,  and thus be characterized by Day. 
- W h e n  diffusion is anomalous, one should realize that the typtcal ~ ~ ~ ~ X, X, - X, X~ and average 
(X~ X, ) - spreading have a (X , ) (X~  ) can very different behaviour in the presence of a bias (even 
only a local blas, zero on average) This is particularly dramatic in the case of Slnafs diffusion discussed 
in section 3 3, as first pointed out by Golosov [Go184] A clear-cut example is pro_~vided by the layered 
medium of section 1 3 2, which, despite the absence of a global bias, is such that X~ - f(~ ~ Ct 3' 2 while 
<Xf) ~ 3/2 C~vt with Ca~ > C. as pointed out in [Dou89a] The values of C and Ca, are computed in 
appendix C, where these fluctuation properties are studied in detail 

t=O 

m L.... 

I 

4 _  
I 

I-t-1 - -  k..... 

L__ 
1 4 " 2  m 

I 

L 
I 

> 

?. 

> 

> 

F~g 2 1 Physical situation where one would measure D,v instead of D the medmm is ma& 

Vt 

" + 

/ ~.. ,4- 

" 4- 

up of one-&menslonal "fibres" along which the 
particles may &ffuse The diffusion front for each channel is characterized by D, but the position of the centre of mass depends upon the channel If 
one cannot "resolve" the &fferent channels, one wdl observe the envelope of the whole diffuston front, which has a width D,,,  obviously larger than 
D 
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2 1 2.2. On the existence of a generahzed CLT for the dtstrtbutton of the posmon As discussed at 
length in chapter 1, for an ordered lattice P(X, t) obeys the central limit theorem, which provides a 
precise characterization of the diffusion process in the large-time limit. One would like to extend such a 
characterization of the probability distribution of X,(r/, to) in the presence of disorder in the cases where 
diffusion is normal as well as when it is anomalous One can consider several distributions, e g ,  

(i) the distribution over thermal histories P(X, t), for a given environment, 
(n) any of the distributions p(X, t), and in particular the average one (P(X, t)), with respect to 

both thermal histories and environments, 
(ni) one can also construct the histogram of the positions of a smgle particle for a given thermal 

history and environment 
For each of these distributions, the question is whether it is possible to find V(t, ) and ~:(t, ) 

such that it reaches at large time a scaling form (d = 1), 

1 
~(t) f ( [ X -  V(t)] if(t)) (2 7) 

(in the usual sense of a CLT, that is, a scahng region being understood) In addition, one can wonder 
whether it is possible to choose V(t) and ~(t) to be functions of t only, devoid of any fluctuations with 
respect to the environment In all the cases considered in the following, the answer will turn out to be in 
the affirmative provided no local or global bias exists (Wnm = Wmn ) In the opposite case, it can happen 
in low dimension, or in the presence of long-range correlations that (P(X, t)) but not P(X, t) satisfies a 
generalized CLT with non-fluctuating V(t) and so(t). This is obviously the case, for normal diffusion, 
whenever D ~ D, v Examples with only local bias and anomalous diffusion are provided by the layered 
medium of section 1.3.2, for which this question is studied in appendix C, and by Sinai's random walk 
(section 3 3) Finally, general considerations about ergodicity suggest that the histogram should in 
general satisfy the same CLT as (P(X, t)) However, it could be that in some cases ergodiclty IS broken 
(see section 3 3) 

A quantity we shall often be Interested in in the following is P(X = 0, tl0, 0), that is, the probability 
of finding the particle on its initial site after time t It characterizes the relaxatton properttes of the 
model. Even at large time, this quantity may contain different information than the one provided by the 
CLT, since X is kept fixed and t arbitrary: X = 0 can be inside or outside the scaling region and may 
thus be unrelated to the scaling function f (if any). As illustrated, e g ,  by section 3 3, P(X = 0, t) ts not 
expected to be self-averaging in general [De189, Bou89b] (see, however, [Der83c] for a discussion of the 
symmetric case Wnm = Wren ) 

2 1 3 The steady state 
Starting from any initial distribution function, an equlhbrlum state can be reached-  the boundary 

conditions being chosen such that no "macroscopic" current exis ts - i f  all local currents can vanish 
simultaneously, that is, if the "detailed balance" condition is satisfied, 

eq eq P. IP m =W.mlW,. . ~ J :q=o (2 8) 

For this condition to be satisfied, the product 

HWomiWm. 
~712 
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must be independent of the path cg12 hnkmg any two sites n I and n 2 If this ~s not the case, no true 
eqmhbnum dlstnbuUon exists but rather the system reaches a dynamtcal steady state with uncom- 
pensated local currents An example of such a situation is presented in the next section. 

2 1 4 Three classes of  models 
We shall mainly be concerned with the three following classes of models 

(A) Traps Each lattice site is considered as a trap with mean desorptlon time ~-n (fig 2 2), 

Wnm : 1 / Z T m ,  Wmn = 1 / z ' r ,  (2 9) 

where z is the lattice coordination number The master equation reads 

d P.(t) = ~ Pro(t) P.(t) 
dt ,,, zr m ZT~ (2 10) 

and the equfllbrmm density satisfying (2 8) is 

P~q ~ "r 

(B) Symmetrical barriers Each hnk of the lattice acts as a symmetrical barrier (fig 2.3), 

d 
Wnm : Wmn " d~t Pn(t) : E Wnm(Pm(t ) -- Pn(t)) (2 11) 

m 

In this case the equlhbrmm density is uniform" penq = constant 

(C) Random forces On each hnk of the lamce lives a force Fnm ( =  - Fmn) (fig 2 4) and the 
transition rates are activated, 

Wnm : Wo exp( -Fnma/2kT) ,  Wm,, : Wo exp(+F.ma/2kT) ,  (2 12) 

where kT  is the temperature This model does not m general *) satisfy detailed balance and local 

( 

C 

-" " ""  L U  

' " C )  C 

. j  , . j  ( 

! 
Fig 2 2 Schematic view of model A diffusion among static random 
traps 

Fig 2 3 Schematic view ot model B random barriers controlling the 
local current 

*)Condition (2 8) can be satisfied only if the dlscrettzed curl of F vamshes, i e ,  tf F Ls the gradmnt of a potenual 
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Fig 2 4 Schematic we~ of model C random forces, creating a local 
random bins 

F~g 2 5 Random resistor network, with each node connected to the 
ground by random capacitors 

currents can survive in the stationary state Only if the forces Fnm are the "gradient" of a potential U, 
F~m = (U, - Urn)/a, will an equilibrium state exist. It then takes the Boltzmann form, P]q - exp(-  U~/ 
kT).  (Note that this IS always the case in one dimension.) The opposite case, where F is divergenceless 
(div F = 0), corresponding, e g., to an Incompressible hydrodynamic flow, clearly leads to a stationary 
state with closed current loops, indeed, the stationary state reads in this case P, = const. = P0, and 
hence 

Jr.. = (Win. -- W.m)P o = 2WoP o smh(aF.m/2kT) .  

The &ffuslon behaviour for models A and B will be gwen In this chapter, in all dimensions. Type C 
models, far more complex and richer, will be dealt with In chapters 3 (d = 1) and 4 (d > 1). 

2.2. Equtvalence with electrtcal and mechamcal problems 

The diffusion problems presented above have electrical and mechanical analogues of great practical 
importance (For a general reference on this topic, see [Doy84] ) 

2.2.1. Random reststor and capacitance network 
The evolution equation of the charges of the capacitances C, located at the nodes of the electrical 

network drawn In fig 2.5 reads 

d q . / d t =  ~ ~r.,( qm/Cm - -  q./C.). (2 13) 
IN  

This is identical to the master equation (2 1) upon the identification 

P,(t) ~ q , ( t ) ,  Wn, . ~ tr~m/C,,. (2 14) 

The above three types of models correspond to the following choices: 
* (7, random and O',m ---- O" for the trapping model (A) with local trapping times defined by zr, = C,/tr 
(which is the local time constant of the capacitance C n). 
* C, = C and O'nm random for the symmetrical barrier model (B), with W,,, = trnm/C In this case the 
potential V, = qn/C follows the same equation. The "equdibrium" situation is obviously V n = constant. 



168 J -P Bouchaud and A Georges, Anomalous dtffuston m dtsordered media 

* Cn random and % m  ~Wt--(nCm corresponds to model C (in the potential case), with C,, = exp(U,/ 
kT) 

2 2 1 1 The "Emstem relauon" for the random reststor network. If only the reststances are random 
(case B), the average conductivity of the lattice ~r and the diffusion constant D of the equivalent 
symmetrical barrier model are related by 

o'/C = D/a'-, (2 15) 

whenever they exist (a is the lattice spacing) A general derivation of this property, due to Derrlda 
[G14], Is given in appendix D Three very important remarks must be made, in order to clarify 
somewhat points which are often obscure in the literature (see, however, [Gel87]) 

(a) We have Improperly called eq (2.t5) an "Einstein relation"; in fact, it is not a statement about 
the response of a diffusive particle to an external electric field, but only a "translation" between the 
electric language and the random walk language. In particular, a random network subjected to an 
external potential drop is not related to a biased random walk problem (see chapter 5 for a discussion of 
the response of random walks to a bias). We shall no longer use the term "Einstein relation" in the 
present context in the following 

(b) The derivation of ref. [G14] in fact holds for periodic lattices obtained by "tiling" boxes of size 
L d, all containing the same random configuration of Wnm It IS, however, expected to be true in all 
situations where there exists a length scale above which the medium can be considered as homogeneous 
(for example, the percolation structure above the correlation length ~:) 

(c) This theorem does not in general extend to the case of random capacitors (an example will be 
given below in which the charges qn diffuse anomalously with D = 0, while the conductivity is finite) nor 
to the finite-frequency case If diffusion is anomalously slow (e g on the percolation cluster, cf section 
6.3.2), one can argue that the finite size d c conductivity of the sample will scale as (v is the diffusion 
exponent) 

o - ( L ) ~ D ( L ) ~ L  >' '~ ,0  
L--+~ (2 16) 

At fimte frequency to, a length scale appears (the penetration depth of the charges), connected to to 
by Lp ~ to-~. One very often argues [Gef83] that for a ~ Lp ~ L, tr becomes independent of L and has 
the scaling form 

o(L,  to)= o(L ,  O)f(ltoL ~'~) , (2 17) 

leading to 

o(L;  to)~( l to)  1 2v (2 18) 

This, however, cannot be true in general (see also sections 2 2 1 3 and 6 3 2). the complex impedance 
(defined, e g ,  by UB/I A with U A = 0, A and B being the end points) of a one-dimensional regular chain 
is of the form [f(to)]c This Is also true for the fractal Koch curve with a different f(to) [Gef87]. Scaling 
relations of the form (2.17) are nevertheless useful when one deals with the mput tmpedance of a 
random network; see section 2 2 1.3 below (and section 6 3) for a detailed example 
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2 2 1 2 Diffusion and conductivity a second theorem [Doy84, Oef87] Another theorem relating the conductance between 
two points of a network (say A and B) and properties of the random walkers on this network may be obtained This theorem 
makes the following intuitive relation precise 

The conductance .v~a between any two points is proportional to the total probablhty that a walker starting on A reaches B 
(while never returning to A) tn an arbitrary number of steps, the weight of a path ~AB simply being 

W[~A.] = H W,,/Ek W,k (2 19) 
4AB 

A trivial example on which one sees this theorem at work is presented schematically m fig 2 6 One readily sees that 

0"~ 

o- = o1 (o-, + 0"9(0"2 + ,70 

3 5 ) 
¢ 2  0"2 0"1 ~r2 0"3 

-}" (0.1 -[- 0"2) ' (0-  2 ~  .,it. 03 )  2 -[- (0. l -}- 0 " )3 (0" ,  - ~- 0"3) 3 ~- 0" 3 ~ 0 .1¢ 2 -~- ¢2¢3  ~- 0"1¢ 3 ' 

which reproduces the rule for resistances in series 
A proof in the general case can be found in appendix D 

2 2 I 3 lllustranon chain with a broad distribution of capaatances [Hu189] Consider the electrical network drawn in fig 2 7 
The conductances ~ r  are constant, equal to tr, while the capacitances are chosen according to a "broad" distribution law, 

O ( C ) ~ C  .+~1, C ~  

According to the above general discussion, this corresponds to the problem of diffusion among random traps of release time 
~ C., which we have considered in section 1 2 3 1 It IS obvious that the end to end conductance, EAB, IS equal to o" whatever the 

distrlbunon ~O, even in the case p. < 1, In which the diffusion constant vamshes in the associated diffusion problem This illustrates 
the remarks made above concerning the non-existence of an "Einstein relation" 

The diffusion properties are nevertheless of interest for the electrical problem, in particular if one considers the mput 
admittance A(to) of the chain [Rig88] Indeed, in a period to-1 of the applied voltage, the charges diffuse over a penetration depth 
Lp(to) given by (2 40) below, 

Lp(to) - to -'/-, , # > 1, Lo(to) _ t o - . / , i + . )  # < 1 (2 20) 

The resistive (real) part of the admittance is thus given by that of Lp(to) conductances in series, 

G(w)~ReA(w)~/Lp(w), (2 21a) 

01 O 2 0 3 

A , - - w w w v , ~  • , w w w w ~  • 4 v w v w w v - ~  B 

1 + 1 ) - '  

+ -" --- •, - ~ _ ~  . 

+ -" = -'" ~-- -'-E ' 

• ,~ ° ,  ° 

Fig 2 6 Illustration of the theorem sermes addition of three resistors 
(section 2 2 1 2) 

___ 0 0 O0 0 0 U 0 --- 
I l l 

2 2 , ; ; ,  ° . . .  
Fig 2 7 Chain of random capaotors, chosen with a broad &stnbu- 
tlon O(C)-C o+.1 for C~m 
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while the capacmve 0magmary) part 1s that o f  Lp(tO) random capacitances m parallel, 

Lp[w~ 
I 

C(w) --- - ± Im A(w) - ~ C. (2 21b) 
O) n=l 

The last sum, as usual, behaves as 

C ( w ) -  Lp(O ) , p~ > l ,  C(~o)- [Lp(o~)]' '" , u < 1 

The rano of the real to imaginary part of the admittance 1s thus 

Re A(w)/Im A ( w ) -  1, V~, (2 21c) 

both being of order 

Re A(w) - I m  A ( w ) ~  Lpl(to) 
As recently pointed out by Mltescu et al [Mlt89], Kramers-Kronlg relations show that if (2 20) and (2 21) are true then the 

phase of the admittance A(~o) is exactly gwen by 

phase A(~o) = ~- , ~ > 1 phase A(o)) - 7r /z ' 2 l + / x  / z < l ,  (222) 

independently of the frequency (See also [Cle84, 90] ) 
The same results may be obtamed using "scahng" arguments For a chain of length L, one expects A(L, to) ~ A(L,  O)f(Lp(oJ)/ 

L) Obviously, A(L, 0) = ~rL 1, demanding that for L >> Lp(w) the admittance ceases to depend on L, one recovers at once 
A(L,  o~)-Lp(w) 1 Note, however, that the frequency dependent end to end conductivity has the following "locahzed" 
behavlour 

o-(L, ~o) ~ (o-/L) exp[- L/Lp(O))] 

2 2 2. The random masses and springs model 
Consider the network of masses M. and springs drawn m fig. 2.8 The displacement X. of the nth 

atom from its equlhbrium position follows the equation of motion 

0 2 

M. ~ X. = ~m K"m(Xm - X.)  (2 23a) 

in the zero-friction limit, or 

d 
7 dt X.  = ~, K.m(X m - X.)  (2 23b) 

m 

in the large-friction hmlt 
for each component of 
Rou87a,b, 88] 

The problem is often called scalar elasticity, since eqs. (2.23) can be written 
X independently For work on "vectorial" elasticity, see, e.g., [Fen84, 

7-'7- 

Fig 2 8 Random masses and springs network 
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Let us speclahze to the case M. = M The matrix A defined by 

A n m = K n m ,  n # m ,  A n n = - E K l n ,  
l 

has only negattve elgenvalues A~, corresponding to the frequenoes of the purely propagating modes 
(phonons) of eq. (2.23a), -Mo)2~ = A~, and to the inverse relaxation terms of the purely damped modes 
of eq. (2.23b), ~21 = _ A~/% The density of those elgenvalues p(A) is simply related to the probability 
of finding the particle on its initial site in the symmetric bamer model defined by W,m = Knm. 

Indeed, the vector P = {P,(t), 0 - < t -  < N} evolves according to (d/dt)P = AP, from which one 
formally deduces 

P(t) = e ~tp(o) . 

One thus has 

P.(tln, O) = A, [e 1. . .  (2.24) 

The average over all starting points of the probability of being at the initial site is then simply 

Po(t) =- N -1 Tr e *' = f p(A) e at dA, 

p(A) = N-1 ~ t3(Z- A,~). 
c t  

(2.25) 

If Po(t) decays asymptotically as Po(t)~ -~a t , the density of phonon modes in the lattice is, for low 
frequencies, 

p(o))  ~ o)2vd-1, o ) ~ O  ( 2 . 2 6 )  

(we have used p(o)) do) = p(A) dA, A = -o) 2) 
For a regular lattice, p(o)) behaves as o)d-1 when to ~ 0 ;  subdiffusive behaviour-  generated by low 

values of K , m -  corresponds to an enhancement of the low-frequency density of phonons; In other 
words, the lattice is anomalously "soft". Let us finally notice that the diffusion constant in the diffusion 
problem corresponds to the square of the (long-wavelength) sound velocity associated with eq. (2 23a) 

2.3. Continuous space formulation: Fokker-Planck and Langevm equations 

Very often the diffusion of a point particle is described by a continuous space Langevm equatton, 

y dX/d t  = F(X) + ~/(t), (2.27) 

which corresponds to the equation of motion of a strongly damped (or massless) point particle subjected 
t o  *) 

*) The posslbdlty of separating F and r t comes, as usual, from the assumption of "slow" and "fast" degrees of freedom revolved in the interaction 
with the medmm 
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- a  force F(X), modelling the interaction with the medium, 
- a thermal noise r/(t), randomly evolving with time, representing the interaction with a thermal bath 
Usually, one takes white noise, 

7L(t)n~(t' ) = ykTa e 6 ( t -  t ' ) ,  (2 28) 

where T is the temperature 
From the Langevln equation one canonically obtains a Fokker-Planck equation for the probability 

distribution P(X, t) (see. e g.. [G5]), 

OP(X, t )  _ dlv J J(X, t)= F p _  Do VP D , , -  kT (2 29) 
Ot " 3' ' Y 

We wish to show here how eq (2 29) can be obtained as a continuum hmtt of the master equation 
(2 1) Indeed. consider the following form for the transition rates W. ~+1, W.+I.  (we consider for 
simplicity the one-dimensional case, but the generalization to higher dimensions is straightforward), 

W . . + , -  ~ ' 2  exp 
' a 2yD.  n+l / ' 

Wn+, Onn+l ( aFnn+l ] , , -  + exp -~ 
a- 2yD.  n + l  / ' 

(2 30) 

where a is the lattice spacing. D . .  +~ corresponds to the local temperature, with the associated "trial 
frequency" Dn ,,+l/a 2 *) W.,.+ 1 and W.+ 1 . are thus taken in activated form, with a local potential 
difference AU. = aFn ~+1 Expanding the W's In powers of a, one thus obtains 

d 1( Pn+l--Pn Pn~__Pn_l)+l(Fn-l,nPn"[-Pn_l Fnn+lPn+l"}-Pn) 
dt P~ = - D~n+I D~-1,. - a a a / a ~  y 2 y 2 

1 (  F~n+l ( p n + _ p . ) _  F]_ , .  ( p _ p ~ _ l ) ) + O ( a )  (231) +8 2 ") y Dn n+l Y-Dn n-1 

Defining 

hm _1 p~=x/~(t ) =_ P(X, t) . 
a~O a 

(2 32) 

one recovers, in the continuum limit, the Fokker-Planck equation, 

0 ~ { F(X) 0 
Ot P(X, t)= ~ [ 3' P +  D(X) - ~  P / 

In d dimensions, it reads 

OP V(  F p + D(X)VP) 
at 3' 

* ~ In the heavily damped hmlt the trial frequency corresponds to the dlffusmn time m the potentml wells 

(2 33) 
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In the above example, the local temperature has been defined on the hnks: yD...+,. One could very 
well have chosen to define the temperature on the sues, 

aFn,n+i ) D. {aF.,.+l~ 
W . . + , -  D"+la_, exp 2--~n+~ , W.+,. .= ~a exp~ ~ } (2 34) 

In this case, the continuum limit corresponds to a dtfferent Fokker-Planck equation, 

o P(x,,)= o o ) 
Ot ~ Y ~ D(X)P . (2 35) 

The difference between eqs (2.33) and (2 35) corresponds to two different order prescriptions In 
stochastic calculus (see ref [G5, G8] for a thorough discussion) It is seen that they reflect two different 
physical situations More generally, depending on the discrete model underlying the Fokker-Planck 
equation, the diffusion term reads 

O (D(X)P  O qP) + = 1  OX - ~  D(X) , p q . 

Let us finally mention that the use of a fluctuation-dissipation theorem, imphclt in the above 
presentation, imposes that 

I(O/OX)ln D(X)[ ~ 1/N/MTD(X) 

(M is the mass of the particle). This condition expresses the fact that the particle must have time to 
become thermalized in the non-uniform environment For the corrections to (2 33) arising from a small 
but non-zero mass in eq (2 27), see ref. [G8] 

2.4. Random traps and random bamers" qualitattve analysts 

In this section we analyse the diffusion behaviour of random traps (A) and random barriers (B) 
models, for a lattice of arbitrary dimension Once the Important statistical mechanisms are identified, 
this can be achieved in a very simple manner using the tools of chapter 1 We thus postpone more 
sophisticated techniques to chapters 3 and 4 

2.4.1 Random traps 
We proceed in a way very similar to section 1 2 3 1, where the "annealed" version of this model 

(CTRW) was dealt with. The difference here lies in the fact that the trapping time at a given site is the 
same for each visit of this site ("quenched disorder"), thus inducing a cbrrelauon between the 
successive trapping times encountered. Whenever this correlation IS relevant, it will induce a diffusion 
law different from that of the corresponding "annealed" problem (CTRW). 

Let N be the number of jumps, and {r,} the trapping times encountered The tlme t and average 
position are still related by eqs (1 25)-(1.27), 

N 

X 2 = l  N t = ~ z ,  
t=l 
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the last sum no longer being a sum of independent random variables. One is nevertheless led to 
distinguish the same two cases as in section 1 2 3 

(i) If ( r )  Is finite, t behaves as N ( r )  for large N (whatever the correlation of the z, is) and the 
diffusion behaviour is thus the same as for a CTRW, 

X 2 ~ 2 D " t ,  D,~o=/z/2(r),~ (2 36) 

(on a hypercubm lattice D = (a2/2d)  ( r )  - '  = a 2 ( 1 / W )  -1 )  

(n) If the r, are distributed according to a broad distribution [~(r) ~ r (i +~,), r ~ co] with 0 < # < 1, 
( r )  is infinite, and one has to treat properly the correlations in the sum (1.27) Following section 1.3 1, 
one has to estimate the number of "effectively independent" trapping times m (1 27), that is, the 
number S N of dtf ferent  sites visited by the Browman motion between traps. One has (cf appendix A) 

N d/2 d < 2 

S N ~  N / I n N ,  d = 2 ,  
N ,  d > 2 ,  

N-- -~  (2 37) 

The results of section 1.2 1 on broad distributions can now be apphed to the sum t ~ ( N / S N )  ~,,,SN= l 7t, 
leading to 

]~k[~' 1 / / *  - 1 
t - - . , ~  N , 0 < t z < l ,  t - N l n S  u , I z = l  (238) 

Combining (2 37) and (2 38), one has the following results" 
- If d > 2, each trap Is visited only a finite number of times as N ~  ~; correlations are not strong enough 
to induce a different diffusion behavlour from the annealed case, 

X2c~ ~ t~' , 0 < Ix < 1 , X2a ~ t / ln  t , /x = 1 (2 39) 

- If d < 2, each site 1s visited lnfimtely often when N-+ ~; one has t ~ N 1-d/2+d/2t*, and a new diffusion 
behavlour arises, 

I t2~ ' 1 / v  = 2 - d + d / l~ ,  0 < tx < 1 ,  X 2 (2.40) 
I t~In t ,  tz = 1 

In the marginal &menslon d = 2, (2 40) is mo&fied by logarithmic terms if 0 < /z  < 1, 

X 2 , ~ t " ( l n t )  1-~ (2 41) 

The derivation given here follows [Bou87c], but the results (2 39) and (2 40) were first obtained by 
Machta using a real-space renormahzatlon method [Mac85]. It ~s worth noticing that the "fixed point" 
(equivalent model at large scales) obtained by this method is simply a CTRW for d > 2, while 
correlations are noL eliminated at large scales for d < 2 (the quenched nature of the problem remains) 
We refer to [Mac81, 85, Bro89a,b] for details on such real-space renormalizatlon methods. 

The diffusion exponent v is plotted as a function of the &menslon in fig 2 9 One should note that, m contrast with naive 
intuition, diffusion becomes slower as the dimension increases (for d < 2) As noted in [Ale81], this is because the probabdlty to 
visit a trap with a long trapping time increases with d (since the larger d, the faster S N grows) These "deep" traps control the 
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IL. 1 g > l  

~'~'1 O<g<l 
2 d 

Fig 2 9 The diffusion exponent v(/z) for model A as a functmn of the space dLmenslon d 

diffusion process, the largest trapping time encountered LS of order 

Tmax ~ sll~ ~ t ~d~" , d < 2, 
~ t  '~ , d>2,  

and thus increases more slowly wlth time for small dlmensLons 
Whether the full distribution P(X,  t) satisfies a "generalized CLT" for this model has not been 

rigorously established. When diffusion is normal, it is clear that this is indeed the case, with a Gaussian 
limit distribution. When diffusion is anomalous and d > 2 the renormahzation procedure of [Mac85] and 
the above derivation strongly suggest that P(X,  t) does reach a scaling form for a given sample 
analogous to the one of a CTRW (see section 1.2.3.1) 

2.4.2. Random symmetrtc barrters 
Random barriers (type B) models are most easily analyzed - at least at a qualitative level - using the 

equivalence with a random resistor network (section 2 2 1). They turn out to have very different 
diffusion properties in one dtmension [G10] and in more than one dimension [Ale81] 

2.4.2 1 One dtmenston In d = 1, the problem simply amounts to a series addition of random 
resistances, o-[ ~ -- (CW,.,+,) -1 The total conductivity of a chain of N units (N jumps for the diffusion 
process) is thus given by 

N _ ~ 1 .  (2 42) 
~r(N) ,=1 

Again, two cases must be distinguished: 
(i) I f  (1 /W) ts fimte, the total conductivity has a finite hmlt for large N, 

1 1 ~ -t 
(1/o-) (2.43) - -  Z [ a  O" t or(N) N ,= ,  

Making use of eq. (2 15), which relates the conductivity to the diffusion constant, one finds that the 
latter is finite, 

D = a2or/C = a 2 ( 1 / W > - ' .  (2.44) 
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Analytical methods allow one to obtain finite-time corrections, together with systematic short-time 
expansions (see ref [G13] and references therein) 

(n) /jr ( l / W )  = +~,  for example, if I /W~ ~+1 has a "broad" distribution, 

O ( W ) ~ W  ~ ~ O<p~<l W~O 

then the total conductivity vamshes for large stzes, as 

o-(N) ~ N' 1 ~ , O < ~ < 1, or(N) ~ (ln N) ' ,  /z = 1 (2 45) 

The diffusion behavlour can be guessed from this result by assuming that the "effectwe diffusion 
constant" at scale X, D(X) = X2/t, has the same scale dependence as o-(N) [cf. eq (2.16)]. This leads 
to a subdlffuslve law [ D ( X ) ~  X ~ 1/.] 

X 2 ~ (  t2~t/ln' t, u = ~/(1 +/x) ' /x0 < /z  < 1 =  1 ' (246) 

This can of course only be considered as a rough argument, since it makes extended use of relation 
(2 15) between o- and D in some transient regime. The result (2 46) is nevertheless the correct one 
[G10], as will be shown by analytical methods in section 3 2 

One thus observes that, in one dimension, the asymptotic diffusion behavlour of random barrier models ts ldenttcal to that of 
random traps provided one ldenttfies IV.. +~ = Wo+~ n with 1/2~'o Thts is true m the normal case, eq (2 44), as well as in the 
anomalous one. eq (2 46) This was to be expected on physical grounds Indeed. for a given link, it is always possible to find an 
energy barrier approximately equal to that of this link, lying at a finite distance (fig 2 10) (the probability that this can be 
achieved in a distance smaller than L reads 1 -  exp [ -L  AW ¢(W)] for a given precision AW) In one dimension, the region 
delimited by these two approximately equal barriers can be viewed as an effective trap In a coarse-grained picture of the latttce 
(fig 2 10) Barriers and random traps models are thus expected to behave similarly at large scales (long time) 

Note the existence of a duahty between site and bond disorder in one dimension Indeed, the time evolution of the current 
J..+~ = W .+~(Pn - P,,+I) for symmetric barriers obeys 

1 d 
Wn,,~l d t J . . ~ l = J . + , ° + : + J  , - 2 J . . + 1  (247) 

This coincides with the equation satisfied by 2%P° in a trapping model with 2% = W.~]+~ 

2 4 2 2 Htgher dtmenstons In more than one dimension, this duality no longer holds 
currents of a symmetric model Wnm = Wren obey the following equation. 

The local 

1 d 
W.m dt J.m = ~k Jm~ - ~, Jn, (2 48) 

[ - j 

Fig 2 10 Duahty between models A and B m one dimension effectwe trap hmlted by two comparable barriers 
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(where the two sums are over neighbours of m and n, respectively). This defines a lattice structure 
which IS no longer identical to the original one. It follows that random barrier models do not have the 
same diffusion behavlour as random traps in more than one dimension [Ale81] 

Indeed, we now show that very high energy barriers can always be avoided thanks to the existence of 
several paths, and as a result that diffusion is always normal, even if the (Wn-m 1) have a "broad" 
distribution. This is most easily seen following a percolation type of argument [Ale81] for the equivalent 
resistor network Assuming that all resistances p > Pm (i.e. W < Win) have been removed from the 
lattice leads to a lower bound for the conductivity or (since the removed bonds are m fact infinite 
resistors). This lower bound is certainly non-zero provided Pm can be chosen to be a finite cut off such 
that p(pm) > Pc, where Pc is the bond percolation threshold and p(pm) IS the fraction of removed bonds, 
given by 

l -p(pm) = / ~(p) dp. 
t ~ 

P m  

Thus, as long as Pc < 1 (I.e., provided d > 1) the conductivity (and accordingly the diffusion constant) is 
non-zero 

Calculating this diffusion constant (or the conductivity of the associated random resistor network) is, 
however, a difficult task (it contains percolation as a limiting case!), no exact expression is known in 
arbitrary dimension, in contrast to the random traps model. This is equivalent to finding the 
permeability of a disordered porous medium [Mag89], the magnetic susceptibility of a random mixture 
of magnets, the permlttlVlty of a mixture of dielectrics [Ber88], etc. For references see [Eto77, 88]. 

Two classes of methods can be used systematic weak disorder or cumulant expansions [Zwa82, 
Der83b, Den84, Kar84, Nie85], and effective medium types of approximation The former will be 
discussed in section 4 2.3 for a general lattice hopping model, while the latter is briefly presented in the 
next section A field theoretic formulation of the random barrier model can also be given, using, e g ,  
replicas [Ste78] or interacting Bose and Fermi fields [Car83a] This can be used as a starting point for 
various expansions [Kar84] or for devising alternative effective medium approximations [Car83a] 

In addition, one should mention that rigorous upper and lower bounds can be obtained on 
variational grounds [Has62] Finally, an exact result is known in the two-dimensional square-lattice or 
continuum case, for binary distributions (two-phase mixtures), 

~O(W) = p 6 ( W -  W1) + (1 - p)6 (W-  1412). 

Then, a duahty type of analysis [Men75] allows one to show that 

D(W~, W2, p)D(W~, W2, 1 - p) = V ~ , D  2 (2.49) 

(D 1 and D 2 are the diffusion coefficients of a homogeneous sample with W= W 1 and W= W 2, 
respectively). In particular, if 1 and 2 play a symmetrical role (i.e., p -- 1/2), then 

D = 1/-DID 2 (2 50) 

(A generalization of this result to a tensorlal local "diffusion coefficient", which arises in the study of 
the a.c susceptibility of magnetic materials, can be found in [Bou89d].) 
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2.4.2.3. Effecttve medtum approxtmatlon. The effective medium approximation (see, e g ,  [Lan77, 
Gub77, Kir73, Eto88] for reviews), is in a sense a kind of mean field theory. The idea is the following" 
one assumes that the diffusion coefficient D (or conductivity, etc.) is known. The random medium is 
then replaced everywhere but in a small sphere by the equivalent "effective" medium. One then 
successively fills the small sphere with the different constituents t of the initial random medium, each 
with its own weight g,,, and computes the new diffusion constant, 

D, = D + ~D(D, D,) (2 51) 

D is then self-consistently determined by the condition 

~ 5D(D, D,) = 0 ,  (2 52) 
1 

stating that, on average, the correction induced by the "impurity" vanishes The method is thus clearly 
in the family of "molecular field" approximations, but is optimal in the sense that It reproduces all the 
previously listed known results it is exact m one dimension, and for weak disorder satisfies the rigorous 
bounds, and yields the special result (2 49)~ In vmw of its interest and usefulness, we quote here the 
self-consistent equation in more explicit form (for a hypercubic lattice in d dimensions), 

a f A -- W 
DEM A - WEMA , d W  ~b(W) W q- (d  - I)WEM A = 0 (2 .53)  

Generalization to non-zero frequency can be found in [Web81, Der83b] 

3. One-dimensional models 

This chapter is devoted to the study of one-dimensional hopping models General analytical 
techniques are presented in section 3 1, the case of random symmetric barriers W,,n+ 1 = Wn+l, ~ is 
considered m section 3 2, and the rich variety of anomalous diffusion properties of the asymmetric case 
with bond disorder is discussed at length m section 3 3 

3 1 Green functton methods, calculauon of the veloctty and &ffuston constant, nature of the fluctuauons 

In this section we shall present Green function techniques for a general one-dimensional hopping 
model, allowing one to obtain exphctt expressions for the velocity and diffusion constant. That such a 
calculation is possible in one dimension relies on the fact that the constant current solutions of the 
master equation (2 1) can then be obtained in exphclt form. This general analysis was first performed 
by Derrlda [Der83a], making use of a periodlzatlon of the medium. Further developments have been 
achieved in [As189a,b] 

In order not to deal from the beginning with the more comphcated discrete case, we shall illustrate 
the techniques on the continuous model described by the Fokker-Planck equation (2 29) The basic 
quantity used in the following is the Laplace transform, 

P(x, Xo, E) = f e-E'P(x, tlx o, O) dt, 
{) 

(3 1) 



J -P Bouchaud and A Georges, Anomalous dlffuszon m duordered medla 179 

where P(x, tlx o, O) denotes the solution of (2.29) with initial condition 

P(x, t= Olx o, O) = 6(x - Xo) (3 2) 

In the discrete case, we shall define in the same way P,(E) from the probablhty P,(t) with mmal 
condition P,(t = O)= 6nn. These quantities are in fact Green funcnons of the Fokker-Planck (or 
master) equations (2 29)°[or (2 1)] Indeed, they satisfy 

o( o) o 
( E  - HFp)P(x, Xo; E) = 6 ( x  - Xo) , HFp -- ~X D(x) -~x " - ~ x  [F(x).] (3 3) 

(in the following we set 7 -  1), and similarly 

E P n ( E  ) - [Wn ,n+lPn+l (E  ) + W m . _ I P n _ I ( E  ) - (W~+, . .  + W n _ I , . ) P . ( E ) ]  = ~.% (3 4) 

3 1 i. The Green funcuon at E = 0 
3.1.1.1. Constructmg the steady state. For E = 0, these Green functions have a simple physical 

meaning As is clear from eqs (3.1)-(3.3), they correspond to the steady-state probablhty generated by 
a source of particles located at the initial site, and emitting one particle per unit time Accordingly, the 
current associated with this steady state reads (for a particular choice of boundary conditions) 

J(x)=l ,  x>-x o, J(x)=O, x < x  o (3 5) 

(and similarly Jn,n+l 7_ Wn+l np  n - Wn,n+lPn+l = 1 for n > n o and 0 for n < no) 
This remark allows one to construct this steady state in explicit form, for an arbitrary configuration 

of the hopping rates, from the knowledge of the constant-current solutions of the master equation. Let 
us begin with the continuous case, for which the general form of a solution with constant current equal 
to J reads 

f F(y) P fix)= C ~ d y -  
i y 

dy dz) J ~ e x p ( - f  F(z) 
D--N ' 

b x 
(3 6) 

in which b and C are arbitrary constants The first term is a zero-current solution and the second term is 
obtained from the first one by "varying the constant C" These two constants are fixed by boundary 
conditions We shall consider first the problem on the whole line ] - ~ ,  +~[. To fix orientation let us 
assume that F(z) is positive for large z (x e , in the case where F(z) and D(z) are random, we shall 
assume (F/D) >0) .  Then imposing the decrease of P(x, x0; E = 0) for x ~  - ~  and continuity at x -- x 0 
leads to 

P(x, Xo; E = O) = 

+~o V 

fay dz) exp(  F z, 
x ic 

Xo 

exp - ~ d y  P(xo, xo;E=O), 
x 

x>--X 0 , 

X<--Xo. 

(3 7) 
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When speclahzed to the non-random case with D(x)  = D o, F(x) = F 0 > 0, this formula reads 

Pordered(3., Xo, E = 0) = / F~l ' x -> x~,, ( Ft71 e-(F~,"Do)",, -'~ " X < -- r o , (3 8) 

which of course can also be obtained by direct Laplace transform of the Gausslan distribution. The 
exponential decrease of the steady state for x < x 0 stems from the bias towards x > 0, and the velocity 
Vo(=F o) is related to the flux at infinity, 

1/V. = Pord (+~ ,  X0, E ~ - 0 ) -  Pord(--°% X,,, E = 0 )  (3.9) 

This whole construction can be repeated for a general discrete hopping model with only slightly more 
involved calculations For n > n o, iteration of the constant-current condition. 

{~ for 11>-n o, 
W n +  1 . P . -  W,, n+lP,,+l = for n < no , 

allows one to relate Pn(E = O) and P.+N(E = 0), 

n + N - I  ~ n + N - 1  1 1 Wjj+, Wj,+, 
P o ( e = 0 ) -  + w,+,, ,=,, + Po+N(E=0) , n17 11- 11"' 

n o I 

P, , (E=O)  P~.(E O) l-[ Wj ,+, = = - , t 1<11{ )  
]=n W/+I ] 

(3 10) 

Boundary conditions remain to be imposed Let us again consider the problem on the whole line and 
assume that the product 

°+(i -l w,,+,  _ fo+N , 
,=n ~ 2 ;  expk I =hE ln(Wj,+l/Wj+11) ) (311) 

vanishes for N---~ ~ In the random case with bond disorder, this is insured with probability one 
provided 

( l n ( W . . + I / W . + , . ) ) < O ,  (3.12) 

which amounts to saying that the mean bias is towards n > 0 [see eq (2.12)]. One then comes up with 
the discrete generahzatlon of (3 7), 

Pn(E = o) = 

1 + W,-  > 
W n + l  n I = 1 1 l ]=n 

n O- 1 

en, , (e=0)  II w, ,+,  
(3 13) 

For a given set of V¢,~, the series on the first line converges with probablhty one under the same 
condmon (3 12) 
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Alternatively, we could have chosen, following [Der83a], to consider a perlo&c medmm of period N, 
W,j = 14I,+ N j+N" Solving (3 10) with P.+N = P . ,  one then obtains (after some reshuffling of indices) 

( 1°+;) 
CN 1+ ~2 W,+,+I , ppner(E = O) - -  W n + l  . . . .  1 l = l  n+ I 

0- 1 
n = |  

(3.14) 

In contrast with (3.13), this only involves finite sums and no such condmon as (3 12) must be 
assumed. 

3 1 1 2 A dtgresston on Kramers' problem Having estabhshed the general forms (3 6) and (3 7) of constant-current solutions 
for an arbitrary configuration (F(x), D(x)), it is natural to show how they allow one to deal with a classical problem the thermally 
activated escape from a metastable state (Kramers' problem, for a review see [Han86] and other papers in the same volume) 
Consider the potential U(x) of fig 3 1, one asks at which rate F particles initially located In the first well will lump over the 
barrier to reach the second one In the strongly overdamped limit, in which neither the potential nor the force F(x) = - U'(x) vary 
appreciably on the length scale (MkT/y2) ~/2 (where M is the mass of the particle), the answer can be constructed from (3 6) 
Indeed Imagine that particles are inlected at x = x~ and removed at x = x z, thus creating a constant current J The steady state 
with boundary conditions P(x = x2) = 0 reads 

x 

f dr P(x)=-JPeq (~;) D(y)peq(y ) ' 
r 2 

(315) 

where Peq(Y)oc e x p [ - U ( y ) l y D ( y ) ]  IS the Boltzmann equilibrium distribution The escape rate is then obtained as the ratio of the 
current to the population in the initial well, 

x b x b Ic 2 

C=j(fp(x)dx)-l=(fdxpoq(X)f dy )-1 
D(y)Peq(Y) 

x 1 r 1 x 

For the configuration of fig 3 1, a steepest descent approximation would lead to 

(3 16) 

M % %  Eb/k r 2 U"(x)/M (3 17) 
F -  2~.7 e , tOx=-- , 

which IS the Arrhenlus-Kramers result [Kra40] in the overdamped hmlt 

Fig 3 1 

u (~)! 

i / 
J J 

y.lX~,..~/ b x 2 x 

Kramers' problem exit time of a potential well for an overdamped particle k current J is rejected at x = x~ and retrieved at x = x 2 
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More generally, the steady-state distribution (3 7) allows one to compute for an arbitrary potential U(x) the mean exit time 
(over thermal histories) of a given Interval I, given an initial position x 0 inside this interval Indeed, the probablhty of being still 
inside I after a time t reads 

f P ( v ,  tl~,. 0) dv 
/ 

(3 18) 

Hence the distribution of exit times is 

at P(y, tlx,,,O)dy (3 19) 
l 

Its average value thus involves P(x, r[,, E = 0) only. 

0 1 1 

(3 20) 

Given the situation and boundary conditions of fig 3 1. (3 16) is recovered from (3 20). (3 7) 

3 1 1 3 Deducmg the asymptouc velocity from the steady state Before going further, we want to 
show that the asymptotic velocity for a general one-dimensional hopping model can be directly obtained 
from the steady state Pn(E = O) 

This can be achieved by two different methods Following Dernda [Der83a]. one can consider a 
gwen pertodtc sample W,; and, making use of (3 14), obtain the asymptotic velocity for afimte period N 
Then, taking the hmlt N ~  ~, the result is found to converge with probablhty one towards a hmlt 
independent of the particular configuraUon chosen Alternatively [Geo88], one can relate the velocity 
to the flux at infinity associated with the average steady state on the whole hne Both methods give the 
same result but both have their loopholes In the latter one takes exphcltly averages over disorder and 
one would like to prove that sample to sample fluctuatmns do vanish in the long-time hmlt No averages 
are taken m the former, but one should prove that the limits t ~  ~ and N ~  ~ do commute (that is, that 
the result on a periodic lattice of large period does coincide with the result on the open hne) In order 
to settle these difficulties, one needs reformation on the approach to the lnfinlte-t~me hmlt, which 
requires the knowledge of the Green function at non-zero E This will be tackled in the next section, 
where it will be shown that the asymptottc velocity ts mdeed a self-averagmg quanttty, the value of which 
coincides wtth the one deduced from the present steady-state analys~s 

Let us first follow the second method and take the average over disorder of the open-line steady state 
(3 13), for a model in which the pairs (W~ ~+l. W.+~ .) are independently distributed on each link 
Then 

(P° (E  = o)) ,+, \oo-o 

n > n . ,  

n < n o 

(3 21) 

The geometrical series in (3.21) converges only provided (Wj/+I/W/+I 1)<  1, therefore 

( P . ( E = O ) ) = + w ,  if (Wj ,+I /Wj+I , ) ->I ,  (3.22a) 
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if (Wj j+,/Wj+,,j) < 1 

x W,__ -I"-nol, n < n  o, 

(3.22b) 

[where in the last expression and in the following, obvious notations have been used for Wj,j+, (W,_) 
and ~+1,,  (W__,)] 

The dependence of the average steady state is thus very similar to that of the pure system (3 8); quite 
intuitively, the velocity is deduced from the flux at infinity, 

1/V=(1/a) !Lrn [(P.(E=O)>- (P_n(E=O)>], 

a being the lattice spacing. One thus obtains (see [Tern72] for an early derivation) 

V = 0 ,  If ('~-~>-> 1, 

--V (~-~)- l (a  = I-(W~>), 

(3.23a) 

W~___ 

For a model with stte disorder, in which the pairs (W._l,n, Wn +l,n) are independent random variables 
(e.g the random trap model A), one gets the same expressions (3.23), provided (W._, W_) denote 
(W. _ ,,., W. + ,,. ) [As189c] 

The main outcome of this calculation is that asymmetric models can display zero asymptotic velocity 
when the "slow" bonds (opposed to the average bias - here towards n > 0) have a large enough weight 
or strength This is most likely the signal of a phase with anomalous drift, as will be discussed at length 
in section 3.3 

The advantage of considering a periodic sample [Der83a] is that at large times a stationary state is 
per  established with a non-vamshing probability on each site, related to P.  (E = 0) (corresponding to a 

constant non-zero current and periodic boundary conditions) Defining 

+zc 

R.(t) = ~ P.+k N(t) ' 
k = - ~ c  

one has 

per  P.  (E = O) 
R . ( t ) ~  vN p,,pCr(E = O) 

Lan= 1 

(3 24) 

The velocity is then computed as [Der83a] 

+ ~ ___dP N 

d x(t)= a ~ n-~-[- a ~ (Wn+l, n Wn_l,n)Rn(t ) (3.25) 
dt ,=-~ n=l 

where the master equation (2 1) has been used, together with the periodicity of the medium Making 
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use of (3 24) and observing that 

N 

Z (w,,+,,,,- 
n 1 

Wn 1 per _ n)P~ ( E = O ) = N ,  

one gets in the hmlt t ~  zc 

d N 
Vs = !im+ dt x(t) = a 2~=,U ppe~(E = 0) (3 26) 

One has thus obtained the expression of the asymptotic velocity for a given periodic sample of 
arbitrary period Taking the hmlt N----> o% one finds that V~ converges with probability one towards the 
previously obtained result (3.23) 

3 1.2. The Green funcnon at E ¢ 0 
3 1 2 1 Recurstve construcUon Obtaining the full Green function for E ¢ 0 is of course a formidable 

task, which cannot be achieved in closed form However, a recurslve construction can be given 
following an ingenious scheme elaborated in [Ber78, G10, Bet85] This scheme makes use of the 
auxiliary quantities G,7(E ), G,7(E ) (n >0 )  defined by (in the following we set n o = 0 for the sake of 
simplicity) 

+ 
G. (E) = .In ~+,(E)/P (E) = W.+l n - W..n+,P.+,(E)/P (E) , 

G2(E)  = J - n - 1  - n ( E ) / P  n ( E )  = W n  , -n -- W - n  - n - I P - n - I ( E ) / P - n ( E )  

(3 27) 

Being the ratio of a current to a probabihty at the "frequency" E, G ~+ (E) [G ~-(E)] can be thought of as 
an effective admittance [G10] for the part of the chain to the right of site n (to the left of site - n) The 
Laplace transform of the master equation (2.1) can then be rewritten, using these auxlhary variables, as 
(n > 0) 

EP.(E)  + E + = - G  n ( ) P . ( E )  + G._,(E)P. ,  , (E) .  (3 28a) 

EPo(E ) - 1 -- - [ G o ( E  ) + Go(E)]Po(E) ,  (3.28b) 

EP_.(E)  = - G ~ ( E ) P _ ~ ( E )  + G~ , (E)P  ~+,(E), (3 28c) 

which are of first order in space, and as such can be easily Iterated to yield 

Po(E) = [E + Go(E ) + GeT(E)]  - I  , (3.29a) 

I ~  + P~(E) = Po(E) Gm-'(E) 
+ 

m = l  E + Gm(E ) 
(3 29b) 

Gm_I(E) 
P &(E) 11 

- m = l  E + G~,(E) (3 29c) 
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The auxiliary variables G, 
given sample (W,j) by 

o;= 

are easily seen to be infinite continued fractions, recurslvely defined for a 

W--n--1,--n W"+a'n , G~ = (3.30) 
W..+1 W 

1+ 1+  + 
E + G,+ 1 E + G~+ 1 

We shall assume throughout this section that condition (3 12) defining the direction of the mean bias 
is satisfied and we shall work on the infinite line Then it is easily seen that the construction of the 
steady state gwen above is recovered for E = 0. Indeed, the iteration of the recurslon relation for 
1/G + (E) is convergent for E--~ 0, while the recurslon relation for 1/G~ (E) dtverges in this limit (this IS 
because Wn,n+l/Wn+l, nlS typically smaller than 1 because of (3 12), while W n,_n_I/W_n_I_ ~ is 
typically larger than 1). More precisely, one notices that for E ~  0 

+ o, (E)--, o+,(o), o2 (E) eg2 +..., 

where G+(0) is defined by the same relation as (3.13), 

1 1 o~ 1 ~ W],]+I 
G2(O~) - Wn+In ~- t=n~+ I Wt+l,,, ,=n W/+,,, (3 31) 

[and thus P,(E = 0 )=  l / G 2 ( 0 )  for n >0] ,  while the g2 are defined by 

g~/(1 + g~+l) =W-n-1,-n/W-n -n- l ,  (3.32) 

leading back to expression (3.13) for P_,(E = 0). The quantities 1/G~+(0), g,- are random vartables, 
whose average values are easily computed in the case where the pairs (W~,j+ 1, ~ + ,  j) are random 
independent variables, 

(Gn+~)= <g:> =0, if <-~)~1, 

< Gn+~> = <~--~)(i - < W~)) -I, 

(3.33a) 

<~_~})-1 [W,_) , (g:>=(~-~>( - , i f \~--£  < 1  (3.33b) 

with similar expressions for site disorder [As189c] 

3.1.2.2 The veloctty and diffuston constant for a gtven sample: self-averaging property. As first 
shown m [As189a], the above construction of the Green function can be used to study the long-time 
behavlour of the thermally averaged position x(t) for a gtven sample. Its Laplace transform reads 

Xl(E ) --- f e - E t x ~  d t =  a ~ n[P.(E) - P_.(E)I • (3.34) 
n = 0  

0 

Using eq (3 29), this can be rewritten as 
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x~(E) = aPo(E)[Go(E)S+(E; ( = 1) - Go(E)S- (E , ~: = 1)1 , (3 35) 

where S+-(E; ~) are infinite series defined by 

S±(E, ~)= 1 + ~ ~" G?(E) 
,,=, ,=, E + G?(E) (3 36) 

(the parameter ~: has been introduced for further use). Studying the long-time behavlour of x(t) 
amounts to studying the singularities of these series for E--~0. This is easy for S (E, ~:), which 
obviously has a finite limit as E--~0, thus the term involving S-  contributes to x(t) only through 
corrections of order 1/t. Analysing the divergence of S+(E, ~:) without taking averages is much more 
difficult It requires the use of a resummatlon procedure [As189a], which we now briefly sketch 
Introducing the centred random variables 

1 ( 1 )  
"y,(E)- G;(E) ml(E)  with mi(E ) = G+(E) . (3 37) 

one writes 

E + G + (E) - I + E[m,(E) + y,(E)] - l + E m ~  =, l + Em~ " (3 38) 

Using this form in (3 36) and collecting terms involving products of a given number of ~, one obtains 
the following convenient expansion of S+(E, ~) 

1 + Em~(E) E~ ~ ~,-1 
S+(E' ~) = 1 - ~ + Em~(E) 1 - ~ + Em 1 =i (1 -rE-m,)" y" 

+ 1 - ~ + E m ~  ~l= ( l + E m ~ )  "+l m=IY"Y'+'" (3 39) 

Thus, one sees that the most divergent term of S+(E, ~: = 1) for E--* 0 is 1/[EmI(E = 0)] independently 
of the specific sample considered. One thus gets from (3.35) 

1 1 
x,(E) m l ( E = 0  ) E 2 +  -- .  E---~0, 

which means that the large-time behavlour of x(t) reads for a given sample 

x( t )=Vt+ . . ,  t ~ ,  V=(1 /G~(E=O) )  -~ 

Using (3 33) this provides a rigorous derivation of the result derived from the steady state in the 
previous section and shows that the velocity is indeed a self-averaging quanttty. The non-leadmg 
contributions to the thermal average of the position, x(t), do, however, display fluctuations from one 
environment to the other, which will be studied in section 3.1.3 
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The same techniques can be used in principle to calculate the diffusion constant for a given sample, 
when it exists, 

1 d 
D = ~ lIm ~ [x(t): - x-~:] 

Indeed, the Laplace transform x:(E)  of the mean square x(t): can be written in terms of S+(s c, E) and 
of Its derivative as 

oo 

x2(E  ) a 2 E  2 = n [P.(E) + P_n(E)] 
n = O  

~=1 

where again the dominant contributions up to order 1/E a come only from the term involving S + 
However, obtaining these contributions in explicit form for a given sample is fairly tedious; further- 
more, the second term x(t) z in D requires the computation of the convolution x 1 * x I of the Laplace 
transforms For these reasons, this direct calculation has not yet been performed in the literature for the 
general case Instead, the following results have been published: 
- In [Der83a, As189b], the diffusion constant of a given peno&c sample has been obtained through 
steady-state methods generalizing the calculation of the velocity presented above 
- I n  [As189a], the calculation of the behaviour at large time of the average over dtsorder (x2(t)) - 
(x--~ 2 ) for an infinite sample has been performed, starting from eq. (3.40). The resulting expression of 
the diffusion constant coincides with the one of the periodic case in the limit of an infinite period It is 
found to be finite (and non-zero) provided 

((W,_/W_.)2) < I ,  

in which case it reads 

D I-(W,_/W__,) / I \ - 3 [ / I \ / W , _ _ \ + I / I \ { I _ / W , _ _ \ ~ ] .  
(3.41) --7 . . . . .  -2 \ -W-~ / [ \ -W-~ / \ - ~  / \ -W-~ / k \ W-~ / } ' a 1 - ( ( w , / w _ , ) )  

D = oo for (W,__/W~) < 1 < ((W~___/W___~) 2) The calculation of D in the last regime, (W,__/W~) > 1, IS 
more complicated, because the velocity vanishes simultaneously, this will be clarified in a particular case 
in section 3 3 

Because the direct calculation for a given infinite sample has not been performed in the general case, 
the self-averaging (i.e. sample independent) nature of D remains to be proven (though it is most likely 
to hold). It has been shown in [As189a] that it holds true in the limiting case of a strictly directed walk 
(In which the W/,I+ 1 are all zero) 

A remark on the Green functton at comctdmg pomts. It is to be noticed that for a general hopping 
model, the velocity and diffusion constant can in fact be computed from the knowledge of the 
expansion at small E of the average Green function at coinciding points [Geo88, As189b], 

( P(x, x; E)) = 1 /V -  2(D/V3)E + ' " .  (3.42) 
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3.1 3 Transtents and sample to sample fluctuattons 
As is clear from (3 35) and (3.36), the thermal average of the position, x(t), is a sum of (correlated) 

random variables, and has thus a dtstrtbunon over envtronments Because the system is one dimension- 
al, the relative standard deviation of this distribution only decays as 1/t ~/2, thus leading to sample to 
sample fluctuations resulting in Day ~ D In general [Dou89a, As189d] 

The above techniques can be used to obtain information on this distribution (and thus also on the 
transient regtmes) Let us first consider ItS mean (x-~) It was first shown in [As189a] that one can use 
(3 35) and (3 37) to compute the first correction to ix(t)) ,  whmh turns out to be a constant, 

<x~> = V(t + to) + (3 43) 

In order to obtain the expression of t o, one has to calculate correlations between the 7. at E = 0, 
together with the subdominant contributions to G + (E) close to E = 0. The former are easily calculated 
from (3.37), 

(~.(E = o)~m(E =0)> = ( i /oo~(o)=>(w_/w~)  ~n-m~ 

with (a = 1) 

t i  ' 2 -i (1/G°(0)2) = I-((~)W )) (<~__~)i 
If <(~'V~/W~)2> ~> 1, 

2 ( W~ )) (344)  
+ -~ ~ , If ((W~/W~)2> < 1 

Expanding the recursion relation (3 30), one observes that for small E, 

o.+ (E)  - o 2 ( o )  + Eg. + + 

where the g+ are given by 

g+ 1 ~+ 1 ~j Wj,+, 

~ -  + 0------~+ G. (0) G,, ( ) ,= 1 G7 (0) 2 ,=,., w,,~i~ 
(3 45) 

This quantity has a finite average provided (W~ j+~/Wj+ 1 ~)<  1, given by 

< w , _ / w _ ~ )  

( g +  \ = ( G + ~ 0 )  2) 1--(W----f~_) c.+(0)2/ 

The constant correction to the average ( x ~ )  is then calculated to be [As189a] (a = 1) 

(3 46) 

= 1 - ( w~ /w  ) V2 c~o)~ 1 , (3 47) 

provided <(Wj/+I/W/+I 1)2> < 1. It diverges when <(W],I+I/W]+ 1 1)2) reaches 1; thus, if the distribution 

of the W,j is such that (Wj.j+I/Wj+I,j) <1  < ((W,,j+I/Wj+ 1 j)2), a finite velocity will be reached for a 
given sample but the sample-averaged correction to this behaviour &verges. t o must be interpreted as 
the time scale after which the regime x(t) = Vt is reached on average • 
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The same techniques can be used to study the variance of the distribution of x(t) over samples. As 
announced above, one finds that it is of order t and can be expressed in terms of V and the time scale to, 

(x(t) 2) - (x--(-~) 2 = V2to t + . . .  (3.48) 

From thts result, one concludes that the diffusion constant Da,, defined in section 2 1 and associated 
with the average diffusion front (P(x, t) ) , does not comctde with D whenever the veloctty ts non-zero, 
and reads [As189d, Dou89a] (a = 1) 

V ( 1 + (W,__/W_~) 
Da~= D + V2t°/2= -2 1-(W,__/W__,) 

1 1 + ( W ~ / W ~ )  
+2Vt o = 2 D -  ~ ( 1 / W ~ )  (3.49) 

Since the variance of x(t) is of order t as soon as V ~ 0, it is clear that the distribution (over thermal 
histories) of the scaled variable (x(t) - Vt)/t  1/2 cannot satisfy a "generahsed" CLT (I.e. reach a limit 
form) for a gtven environment The basic mechanism underlying these sample to sample fluctuations can 
be most simply illustrated on the following example [Dou89a]. Consider a sequence of random variables 
(tl ,  t 2 . . . .  ), which are independent but distributed according to dtfferent distributions Pl ( t ) ,  P2(t), etc. 
One asks whether the CLT can be generalized to the sum 

T. = ~  t, (3.50) 
t = l  

This is the generic situation one encounters in a disordered medium. T n describes, for example, the first 
passage time at site n of a random walker with IV,.,+ 1 = 0 and W,+L, = W, (directed walk), p,(t) being 
the waiting time distribution, p, ( t )= IV, exp(-W,t) Denoting by ~, and ~ the mean and variance of 
p,(t), one has 

7"n = "r , T Z n -  T 2  n = O" t . (3 51a,b) 
t = l  t = l  

The proof of the CLT (in its usual Gaussian form) given in section 1.1 can be readily extended (cf. e g ,  
ref. [G2]) to such an lnhomogeneous situation when one considers the rescaled variable 

(Tn-Tnn)  orl} ' (3.52) 

provided that the series (3 51b) diverges. Let us assume furthermore that the series (l/N)z,N=I ~', 
converges (as would be the case for the above walk when (1/W__, ) < oo); it is easily seen that no C L T  
holds if one rescales T, as Tn-n l imN__ .~N -1 ~N=A Tt instead of T n - -~ , .  The basic mechanism 
encountered in this section is indeed that one cannot forget the fluctuations of x(t) by replacing it by its 
leading term, Vt However, this suggests that for the above hopping models, the distribution of the 
variable [x(t) - x(t)]/t 1/2 - when diffusion is normal - could have a limit form for a given environment 

3 2 Analytical results for  one-dtmenstonal symmetric bamers 

The above Green funcUon techmques, and in partmular the recurslve construction of secUon 3 1 2, were first apphed (see ref 
[G10] for a review) to the case of random symmetric bamers W..+1 = W.+I. (=W.), independently dlstnbuted according to 
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~0(W) In section 2 4 2 we have performed a quahtatlve analysis of such models, based on their electrical analogue and on general 
statistical mechanisms Analytical results and techniques will be briefly summarized in this section, referring for further details to 
the review article of Alexander et al [G10] 

The starting point is the recurslve relation (3 30), which, m the symmetric case, becomes 

1 1 1 
G. + IV + E + G.++, (3 53) 

(with a similar relation for G2) The G. are random (correlated) variables depending on the sample (W,,) Their distribution 
QE(G) satisfies an integral equation which follows from the above recurslon relation, 

+ 1 

{ dG'Qv(G')~o(G(G'+E)3(  G ' + E  ]: 
G77E---C, / \G'  + E -  a /  (3 54) J \ 

(, F 

(The use of such an integral equation, initiated by the works of Dyson [Dys53] and Schmldt [Sch57] (see also [Lie66]) on random 
harmomc chains, is a powerful tool to study one-dimensional systems ) Because the G. are correlated, the distribution Qe(G) 
does not contain all the desired information on the diffusion behavlour, however, it allows one, for example, to compute the 
average over disorder of the probability of presence at the initial site (autocorrelatlon function), whose Laplace transform reads 
[using (3 29)] 

<po(e)> = f dC IdC' o (c)o (c'l . E + G + G'  (3 55) 

Detailed studies of the solution of the integral equation (3 54) have been performed, in both limits E ~  +2  (short times) and 
E ~ 0  (large times) (see ref [G10]) Note that, for the pure system O(W)= 6 ( W -  W0). Qe(G) is a delta function 6(G - Go) 
with 

2G, = ~/ E 2 + 4W"E - E (3 56) 

In the limit of infinite E, one Immediately sees from (3 54) that Q=(G) = ~0(G) Provided the successive moments (W A ) of IV,, 
exist, a systematic expansion of Qe(G) in powers of 1/E can be performed [G10] This can also be done for the integral equation 
satisfied by the full average Green function (P . (E) ) ,  yielding a short-ume expansion of the diffusion law (a = 1). 

(xZ(t)) = 2 ( W ) t -  2[<W 2 ) - (w)21/+ ~(2(w 3) - 3 ( w 2 ) ( w )  + (w)3) t '  + (3 57) 

However. the relevant information on the large-time behavlour is contained in the small-E regime, where (3 54) is much more 
difficult to analyse For E = 0, it is clear that Qo(G) = 6(G) satisfies (3 54) Since in the infinite-time limit a generahzed central 
hmlt theorem is expected to apply [e g to P.(t)], one can suspect that Qe(G) will depend only on a scaled variable G/e(E) (in a 
hmlt in which G and E are both small) Solutions of (3 54) have thus been looked for under the form 

QE(G) = e~E) h(a/e(e)) (3 58) 

The scahng factor e(E) and scahng function h(x) were found to have a qualitatively different behavlour according to whether the 
first moment (1/W.) is finite or not [Ber80] 

(i) if ( I / W )  is finite, the problem is found to be very similar to the non-disordered case, with an effective hopping rate 
Wef f = ( 1 / W )  1 indeed, one finds that 

e(E) = V-E(1/W) 1,2 h(x) = 8(x - 1) (3 59) 

This leads to the familiar large-time decay of the density on the initial site, 

1 
(P°(t)),2~ V47rOt (3 60) 

(Recall that in this case diffusion is normal with a diffusion constant D = ( l /w" )  1) 
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(n) If, on the contrary. ( 1 / W . ) = ~ .  for example, if 

O ( W ) - W  ~-1, 0 < t L < l ,  W ~ 0 ,  

then h(x) is found [Ber80] to be a non-trivial function continuously depending on/ t  and very different from the result for the pure 
system h(x) satisfies the following integral equation 

r 

(whose solution can be expressed m terms of a generalized hypergeometrlc function [Ber80]) The scaling factor e(E) reads 

e(E) ~ E l t ( 1 + " )  , (3 62) 

leading to an anomalous decay at large time of (P0(t)). 

(Po(t)) ~ Ct -~''(1+") , t--->oo (3 63) 

In section 2 4 2 1 diffusion was shown to be anomalous in this case, with a diffusion exponent v =/x/(1 +/z). which precisely 
corresponds to (3 63) if one takes the scahng form (2 7) of P.(t) into account Note that, in this unbiased situation, a CLT is 
expected to hold for P.(t) for a gwen environment, however, the scaling function f(x) associated with P.(t) is not known 
analytically for this problem, as opposed to h(x), a purely exponential form f(x) = e -clxl has been advocated on a numencal basis 
[Bet80] 

3.3. Anomalous diffusion behavtour of the asymmetrtc hoppmg models wtth bond disorder 

The general analysis of section 3.1 reveals that asymmetric hopping models with bond disorder can 
display anomalous diffusion behaviour without assuming a priori broad distributions of hopping rates 
This is at variance with the symmetric case studied in the previous section and with the random traps 
models of section 2 4. The aim of this section is to discuss this anomalous behavlour through (i) a 
physical explanation of the underlying statistical mechanism and (ii) some analytical results. In so 
doing, the continuous-space formulation of the random force model (section 2 1 4, 2.3) is most helpful, 
since it retains the essential features of all asymmetric hopping models while allowing the exact 
calculation of some quantities [Bou87a, 89a]. Section 3 3 1 is devoted to a presentation of this model. 

3.3.1. The contmuous random-force model 
3 3.1.1 The model. The continuous random-force model is defined through *) 

Wn n+l - -  T e_.V. /2r  Wn+l._ T e+OF./Zr 
, 2 , , ' ya ya 

with F Gausslan distributed ((F) = Fo, (F, Fm) c = (ola)6,,,,). The continuous hmit (a--->0) of the 
associated master equation corresponds to the following Langevln equation: 

y dx/dt = F(x) + rl(t), (3 64) 

where F(x) is Gausslan white noise (in space) and r/(t) Gausslan white noise (in time) (see section 2 3) 
Equation (3.64) is thus the simplest Langevin equation describing the motion of a particle in a random 
medium one can think of. As we are in one dimension, F(x) can be written as F(x) = -dU/dx;  U(x) is 

*) In the following, we set the Boltzmann constant equal to umty (k = 1) 
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U(x, 

j'5. 
/ 
i 

I 

-FoX 

F~g 3 2 Typical configurat]on of the potential of which the random force F(x) 1s the derlvatwe The fluctuations of U(x) around the average slope 
-F4rr typically grow as x / ~  

thus a "Brownlan motion" in x, a typical configuration of which 1s depicted in fig 3 2. One immediately 
sees that the motion of the particle under the external bias is strongly impeded by the fluctuations of the 
potential 

3.3.1 2 VelocUy and dtffuston constant The results of section 3 1 allow one to calculate the 
asymptotic velocity and diffusion constant for model (3 64). This shows at once that non-trivial 
properties appear for some values of the parameters defining the problem. For a Gausslan F, one has 
(in the following we shall take F 0 > 0) 

( ( W n , n + l / W n + l , n )  ~" ) = ( e - (aF . /T )  k ) = e-(.~/zr2)k(.-~) (3.65) 

where ~ 1S a dimensionless parameter, 

=2FoT/# (3 66) 

/z is thus the ratio of the mean energy gain (over a lattice site) Foa times the thermal energy to the mean 
square of the energy fluctuation o'a (again over a lattice site). Applying eqs (3 23) and (3 41) to this 
particular case, one finds 
* 0 < / ~ < 1 :  (WJW_,)  >- I, and hence V = 0 ,  
* 1 < /z  <2:  (W,_/W_,)< 1 < ((W,/W_~) 2) The velocity is now finite and reads 

V= Vo(1 - 1/#) (3.67) 

(F0/y = V 0 IS the velocity the particle would acquire in the absence of disorder.) The diffusion 
coefficient, in this phase, IS infinite 
* # > 2 or ((W,_/W~) 2) < 1. V and D are both finite; V retains the same expression as above and D 
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reads 

D =  Do(ix - 1 ) / ( I x  - 2) , (3 68) 

where T/y ]s the "bare" diffusion constant D 0. The width Day of the average front can also be obtamed 
from (3.49) and reads 

Dav = Doix/(tx - 2). 

Note that in the hmit of an ordered system ((r ~ 0, /~ ~ ~), one recovers D =Dav = D 0. 
These results are summarized m fig 3 3, where V/V o and D/D o are plotted versus/x One should note 

that these two quantities are singular for different values of the control parameter, this is often 
encountered in the physics of &sordered systems (see, e.g., [Der84a]). 

The only parameter controlhng the transport properties is thus the dimensionless parameter IX, which 
is independent of the lamce spacing a and of the frictmn coefficient y. IX increases as the mean bias or 
the temperature grows, and decreases if the disorder gets stronger 

The appearance of a phase where the velocity vanishes simply means that the relation between 
position and time is subhnear [Der82b, So175, Kes75], ( 2 ) -  t ~ with a < 1. The dwergence of the 
diffusion constant signals the fact that the spreading of the probability d~strlbutmn grows faster than t 1/2 
( x  - 

The aim of the next sections is to show how these laws can be understood on physical grounds 
[Bou87c, 89a, Vin86, Fei88] and the diffusion exponents calculated. 

For a general asymmetric model, these two anomalous diffusion phases read (section 3 1) 

(W,_/W_~)>-I, (W~/W__,)<I<-((W~_/W~)2), 

which are easily shown to yield 0 < IX -< 1 and 1 < /z  -< 2 in the continuous hmit (3.64). 

I 

D=oo D=O I I D=oo 

I 

I 

I 
I 
I 
I 

I 
I 

' I 

- 2  -1 - 1 / 2  o t /2  1 2 

Fig 3 3 Velocity and diffusion constant (divided by the]r "pure" values) as a function of the dzmenstonless ratio/~ The dash-dotted line shows the 
behavlour of the current going through a finite-size sample 
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3 3 1 3. Length and ttme scales The problem at hand is thus the thermally activated motion of a 
particle within a potential, schematically depicted m fig 3 2 One is led at once to single out two length 
scales, defined by comparing the fluctuational energy ~ (a) to the mean energy gain due to the 
external force, -Fox, or (b) to the thermal energy T Then for x ~ x o = o/F2o, the particle's motion is 
mainly determined by the energy fluctuations and insensitive to the presence of the mean bias F o The 
thermal energy T allows the particle to diffuse without being too much affected by those fluctuations 
until V - ~ - 2 T  (or x - x ~  =4T2o - 1); this distance is reached after a time corresponding to free 
diffusion, 

.q = x~I2D o = 3/ 8T3/ff 2 

Now, two very different physical situations occur when x o >> x 1 or when x~ >> x 0 The former case 
indicates that, well before being able to feel the external force, the particle is "pinned" by strong 
fluctuations at scales x I and must then walt for a large energy fluctuation z~E >> T from the thermal bath 
to overcome the potential barrier and continue on its way 

On the other hand, if x~ >> xo, thermal energy is able to bring the pamcle far enough so that the 
mean bias F o exceeds the force fluctuations; the subsequent morion is then only slowed down by rare, 
very Large, force fluctuations occurring on a scale x~. The relevant control parameter thus naturally 
appears as 

x, Ix o = ( 4 T: /o)F~lo--  #~ 

[see eq. (3 66)] or equivalently, as the ratio of the energy barrier associated with the scale x 0 to the 
thermal energy, 

AU(xo) /2T= o / 2 T F  o = 1/tz . 

As IS clear from formulae (3.67) and (3.68), ~ = 1 does not merely correspond to a cross-over region 
but to a true phase transttton separating a region of zero velocity (~  < 1) from a region of finite 
velocity 

This physical analysis suggests that the motion of the particle can be seen at large scales as a 
successton o f  trappings within regions of size x I (fig. 3.2), characterized by a release time dlstrlbunon 
corresponding to the different times needed for the particle to receive the fight amount of thermal 
energy. As will be reviewed below, this analogy can be made more precise the distributions of 
relaxation times and of the thermal average of the waiting time can be obtained in closed form for th~s 
model [Bou87a, 89a] and indeed turn out to be broad. 

3 3 2 Smat's dlffuston for zero global btas 
3 3 2 1 Ultra-slow dtffuston When the external bias vamshes (F 0 = 0, or more generally when 

( l n ( W J W ~ ) )  = 0), the previously defined length scale x 0 diverges and the particle can only rely on the 
thermal bath to progress and overcome ever increasing potential barriers: in order to span a distance x, 
the particle must be given an energy typically of the order of v ' -~ ;  this takes a time governed by an 
Arrhenius law, 

t-~ ~-~ exp(~&--£/2 T) (3 69) 
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('7" 1 IS obviously the order of magnitude of the "trial" frequency) This suggests 

(~(t)) = O, (xZ(t)) = CxZ1[ln(t/rl)] 4 (3 70) 

This remarkable slowing down of the diffusion process has been discovered by Sinai [Sin81, 82], who 
gave a rigorous proof of the above law for a discrete time version of the hopping models considered 
here 

While the typical time needed to reach x Increases as (3 70), one may, however, ask what the 
average (over different starting points) of this time is. As first discussed by de Gennes [dGe75] and 
recently shown by Noskowltz and Goldhlrsch [Nos88] (see also [Dou89b]), this is obtained as 

( t - - -~ )=(exp ( -~  f F(z )dz ) )=e  ~x/Sr2 , (371) 

o 

which IS much greater than the typtcal time. (As will be discussed in chapter 4, long-range correlations 
(F(x)F(y)) ~ Ix -  yl -a with a < 2  lead to a modified Sinaa law x2( t ) -  (In t) 4/(2-a' [Bou87b, Hav88b] ) 

3.3.2.2. Dtffuston front and the Golosov phenomenon More precise results about Sinai's diffusion 
have been obtained recently by Golosov [Go184] Here again the point is that the thermal average T, 
fluctuates from sample to sample (while, since no global bias is present, ( ~ )  = 0). In the case at hand, 
these fluctuations turn out to be of the same order as (.,?~)1/2 For a fixed configuration of the potential, 
the mean position of a packet of particles initially at x = 0 evolves as 

x(t) = sc,(to)(ln t) 2 , (3 72) 

where sc,(to) is noise of order 1. The width of the packet, however, quite surprisingly does not grow wtth 
ttme" one has 

x2( t ) -  x--~2--- x21, t--->oo. (3 73) 

Two initially close particles, undergoing different thermal histories, stay close to each other for all 
ttmes, this means that, at any given time, one deep valley (at a distance ln2t from the origin) dominates 
all others and gathers all the particles (see fig. 3 4a) It is thus clear that P(x, t) does not evolve towards 
a limit distribution for large t, and remains concentrated around its centre of gravity 

For disorder-averaged quantities, one has 

( X ( t ) )  = O, (x2(t)) --In4/ (3 74) 

An intriguing remark [Dou87] must be made concerning the full averaged hmlt distribution of the 
scaled variable x/ln2t: as the potential U(x) is a "random walk" as a function of x, the probability that 
U(x) remains confined between - U/2 and + U/2 in the segment [0, x] is a well-known quantity [G1], 
which reads 

( (2k+l)27r  2 ) (3.75) 4 ~ (-1)* exp - x . 
7r ,=0 2k + 1 2U2tr 
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Fag 3 4 (a) The Golosov phenomenon m a gwen envaronment, the probabahty dastnbutmn as peaked, its centre of mass is at a dastance ~, ln2t from 
the origin, whde ats wadth as fimte, - x  1 = (kT)2kr (b) Scalang functmn for the average dlffusaon front m Smafs (F o = 0) case 

Now, the h~ghest potential barner being of the order U, the associated time is t ~ exp(U/2T) and one 
can think of replacing U by 2T In t m the above formula to get (P(x, t)) for large t Remarkably this 
leads essentially to the exact result for (P(x, t)), which takes the scaled form 

x~ (P(x, t)) ~ l n  2(t/r~)fo x~ lnZ(th~) ' (3 76) 

~c  

~,(u) = _8 ~ (-1) ~ exp[_~.2(2k + a) lull (3 77) 
7r k=0 2k + 1 

This exact expression for f0 (see fig. 3 4b) has recently been derived by Kesten [Kes86] for a related 
discrete rime model, and is m very good agreement with the numerical results of [Nau85] (see, however, 
[Bun88]). It has also been partially recovered in [Bou89a] using the replica trick and a WKB method 

One can also wonder whether the histogram of the positions of a single walker for a single thermal 
history and a gwen enwronment reaches a limiting form when x(t) is rescaled by (In 02 While 
ergodlclty would suggest that it coincides with { P(x, t)), this property has, to our knowledge, not been 
proven 

3 3 3 Non-zero btas mduced broad dtstrtbutton of trappmg ttmes 
As suggested by the analysis of characteristic scales of section 3 3 1 3, trapping regions are induced 

at large scales m the models considered here We show in this section that the correspondmg trapping 
rime dlstnbut~on ~s "broad", ~ e ,  has a slow power law decay, which is ldennfied precisely 

3 3 3.1 Phystcal origin" rare events The appearance of a broad trapping time distribution has a very 
general ongin m thermally actwated systems ~t comes from the fact that exponentially rare energy 
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barriers take an exponentially long time to be crossed. If p(A U) ~ exp(-A U~ 2 T o) and z ~ exp(A U/2 T), 
one has 

~(  "~ - ( I+  T/To) 
P(0  dr  =p(AU)  dAU -,'. 1_, r)¢Z, z (3.78) 

The origin of the (Polsson) exponential distribution of energy barriers can be understood on the binary 
model for which the local force is equal to F 0 with probabihty 1 - p and - F 0 with probability p ~ 1 

The probablhty of encountering a sequence of "unfavourable" drifts of length Na is obviously 
P(N) =pN The corresponding barrier height is AU = NaFo, and hence 

p ( A U ) - e  -aw2r° with 2T 0 = aFo/ln p .  (3.79) 

Let us first describe a heunstic way of obtaining the large-time behavlour [Fe188] of the corresponding 
distribution for the continuous model (3 64), which is easily generalizable to, e .g ,  correlated random 
local forces. Define pL(AU) as the probablhty that the potential energy is equal to U = 0 for x = 0 and 
U =  AU for x = L, 

L L 

f F(x, dx+   )exp(-f dx Fo] 
0 0 

+ ~  L 

f ~ (lkAW [F(x)-- go]2 ] exp[f dx X---2-- + lkF(x) -2-~ / J '  
--oo 0 

(3.80) 

which yields, for L large enough, 

pL(AU)oce -F°av/~ , L--->~, (3 81) 

and hence, using z ~ exp(AU/2T), p ( z )~  z -(1+~') for r ~  with/z given by (3.66) 
The saddle point of integral (3.80) is at F(x)= AU/L, which shows that indeed AU can be 

interpreted as the highest energy barrier between 0 and L. Note also that the case of a Gaussian 
correlated force [(F(x)F(y))c  = G(x - y)] can be easily treated with this method and leads to the same 
probabihty distribution for trapping times upon the replacement 

or---> f G(x) dx . 
0 

(3.82) 

If the correlations are long ranged [I.e., G(x) ~ x -a with a < 1], then pL(AU) will never cease to depend 
on L, and one should work with an "effective parameter" /z(L) going to zero for large L a s  L a-1 

The above argument shows that indeed a broad distribution of trapping times appears m the random 
force model. This is a generic feature of asymmetric hopping models, the exponent governing the decay 
of this trapping time distribution being in general gwen by the equation [Der82b, 83a, Kes75] 

((W,__/W,)") = 1 (3 83) 
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(a justtficatlon of whtch wall be gwen below) The solution of this equation for the continuous model 
considered here mdeed colnctdes with 2FoT/o 

Moreover, one may for thts model calculate exactly the dtstrlbution of two particularly mterestlng 
quantlttes [Bou87a, 89a]" 
- the dtstributlon over envtronments of the thermal average of the local "soJourn time", denoted as ~:, 
- t h e  denstty of (mverse) relaxatton ttme [Bou87a] defined through 

(P(x o, tlx o, 0)) = f dr p(r) e t , "; 

0 

These quantmes wtll be calculated in the next section and in section 3.5, respectively Both mdeed show 
the expected algebraic tad for large time 

3 3 3 2 Exact calculatton of the dtstnbuuon of the mean local trapping ttme Let us isolate a region I of size x 1 and put a 
particle at t = 0 on site x, taken as the "entry point" of the trap, I = Ix, x + x~] The probability that the particle is stdl inside I 
after time t is obviously (cf sechon 3 1 1 2) 

p,(t) = f dy P(y, tlx, 0) (3 84) 
1 

The probabdlty of leaving I between t and t + dt is simply 

-(O/Ot)p,(t) dt (3 85) 

Note that it is very small for t ~< r~ The mean exit time [mean ~s here over different particles or thermal h~stones, but for a given 
configuration of F(x)] is then 

j0 ,f 4 ( x ) = -  d t t ~ = -  d v P ( v , r , E = O )  (386) 
II I 

Taking I = [x, x + dx], one may thus define the local "soJourn hme" ~:(x) to be proportional to P(x, x, E = 0) For physical 
reasons the proporhonahty constant is chosen to be r 1 

From (3 7), it is easy to see that 4(x) satisfies the following equation 

d4" F(x) 4 r 
x r , , d  - ~ - ~ = - 2 + 2 # ~ - ? '  ÷ = - - '  , 7 = - - ,  (387) 

Tl ~" 1 

which is a "Langevxn equation" for ~ to which one naturally associates a Fokker-Planck equanon* ~for the probabxhty ~0(4-, £), 

0(0 ) 
0~ ~(?'  ~f)=2 ~ ? ~ ~b + (1 -/z~-)g, (3 88) 

The normahzable stationary distribution ~0(?, .f = -o¢) reads 

1 
0(÷) = C(tx)~.l+. e l r (3 89) 

which exhlb,ts the expected power law decay for large 4- The moments of q then read 

(~")  = T7 r(~ - n) F(#)  n < # ,  (~") = + ~ ,  n > #  (390) 

Note that this expression can also be &rectly computed from (3 7), using the fact that F(x) is Gaussmn distributed 

*} Note that the correct prescnpUon to be used (Stratonovlch's) is fixed by working on a latUce 
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\ 

Fig 3 5 Detail of a trapping region and typical succession of trials leading to escape, which generate the "Kesten" variable z~ + z~z 2 + 
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Remarks  
(a) Expression (3 7) for ?(x) has a simple physical interpretation if one writes 

] (391, 
x T  / x T  " 

which expresses the fact that - in a region of large fluctuations - the parhcle will first make a hop to x + a but then will roll 
downward until it has sufficient thermal energy to reach x + 2a, etc,  until it finally reaches a crest beyond which the mean bias 
takes over (see fig 3 5) The typical time needed to exit the trap is the sum of the times corresponding to the mtermedlate steps 
~(X) IS thus of the form ~ = z x + z l z  2 + z1z2z 3 ~- , with z, o: e-a6 ;xr Such random variables have been extensively studied in 
[Kes73, dCa85, Der83d], for large ?, one can show that the resulting distribution of ? decays as ?-o+.)  wah/z defined by the 
equation (z ~) = 1, which provides a justification of (3 83) [Indeed, q, satisfies the following integral equation 

f d;' f dz o(z , t , -z( l+  ;')[= f o(Z z 4 ; ( ~ / z - 1 )  

Assuming an algebraic ~(q) for large ~ immediately leads to (z ~ ) = 1 ] The case studied here (In z Gausslan) is remarkable since 
it leads to an explicit solution (in the hmlt a ~ O )  of the above integral equation, (while the general case is quite complex 
[dCa851) 

(b) An interesting issue of the above analysis is a more quantitative description of the transient regimes, already discussed on 
physical grounds in section 3 3 1 3 This amounts to studying how the distribution ~b('~, 2) approaches its large-scale hmlt ~,('~). 
and requires the computation of the spectrum of elgenvalues of the Fokker-Planck operator (3 88) This has been done in 
[Bou89a] and the result of this study is that for ~t < 1 the spectrum of (3 88) only has a continuous part, and that 

(~'~(O)'T(X)) ~ X 3/2 e g2x/2x1 

As foreseen in sections 3 3 1 1 and 3 3 1 3, it is thus the characteristic length x 0 = xl/ iz:  which governs the approach to the 
asymptotic regime in this phase The corresponding time to reach this scale is indeed z~ e , since for x < x 0 the diffusion follows 
x 2 ~ xx(ln 04 For ~ > 2, the correlation function of the r 's is easily obtained from (3 7) and (3 86) The result has in fact already 
been stated in (3 44) and reads, when specialized to the model at hand, 

2 
~'1 e-2(~- l)X/Xl 

('~(O)q(x)) - (q(O))(q(x)) - (#  _ 1)(/x - 2) 

Thus it is seen that the effective traps are correlated, with a correlation length x ~ / 2 ( I x -  1) 
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For a more general asymmetric model, these conclusmns are quahtatlvely unchanged, with IV,,,+ ~/IV + it playing the role of the 
vanable exp(-aF,/r) on each hnk 

3.3 4 Phase diagram and asymptotic probabthty dtstrtbutton for non-zero btas 
The previous section justifies the idea that, when F 0 ~ 0, the physics of the random force model is 

well captured, in the long-time hmlt, by a dtrected walk among traps wtth a broad release nme 
dtstrtbunon [Bou87c, Geo88, Bou89a] This simpler model can be solved exactly [Dou87] (section 
3.3 4 1) This equivalence can only be approximate since it neglects correlations between trapping rimes 
(no steps backward), and its status will be discussed in secnon 3 3.4.2 It leads, however, to the correct 
diffusion behavlour and average limit distributions of the posmon, the form of which is independent of 
the details of the correlanons at short distance Such an idea was also expressed in [Ber86] on the basis 
of a decimation approach 

3 3 4.1. The directed walk wtth a broad O(W) Let us consider the directed walk on a lattice of 
spacing ~:, described by the master equation 

dP, /d t  = W,P,_ I - W,+IP" , (3 92) 

where the W. arelndependently distributed according to a broad distribution O(W) whlch, for smaUW, 
behaves as 

O ( W ) ~ A ' ~ W  u - 1  (3 93) 

The waiting time distribution on each site is simply W n exp(-Wnt), and its mean, equal to % = 1~W n, 
has a broad distribution behaving as r2 (1+~') for large r.. The thermal average of the first passage time 
at site x thus reads 

x/~ 

t(x) = ~ W] 1 (3 94) 
t=l 

When the W] ~ are broadly distributed, the results of chapter 1 (secnon 1 2) thus allow one to guess the 
diffusion behavlour 
- I f / ~  < 1, the sum t(x) grows as x 1/", and hence the posltlon will behave typically as t", 1.e., more 
slowly than t ("creep phase") 
- If 1 </x < 2, the sum t(x) grows as x but the fluctuanons are of the order of x ~/~', thus the position will 
be typwally of order Vt +-t l/" ("anomalous dispersion"). 
- If /x > 2, the fluctuanons recover a "normal" character and x is typically of order Vt +- V-~t, with V 
and D finite 

The interest of the directed walk is that much more preose statements can be made, in parncular 
about the diffusion fronts. Indeed, the general formula (3.29) bolls down, m the directed case, to 

 P(x = E)  - E + Wn ,:0 E + W (3 95) 

Hence, the asymptonc form of the average diffusion front is obtained as the reverse Laplace transform 
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of 

1 ~(/ W ~ '2 .  exp(n ln(E_~W))  ~ 1 \ ~ 1  

For the three cases above, this leads to the following results 

(i) 0</~ < 1 The small-E expansion of (W/(E + W)) reads 

(W/(E + W)) = 1 - A(Er~)"Tr/sln 7fix. 

Thus the Laplace transform of (P(x, t)) behaves as 

exp(-  C n~(E,r~),~) 
cos(~-/~/2) 

C = A 7r (3.96) 
2 sm(~'~/2) ' 

which shows that, in the scaling region, the average diffusion front can be expressed in terms of a Levy 
law of order/x, characterized by the two parameters fl = +1 and C (given above), 

l'r~\~ /r~ x) i +1/,,)1(c ) r _1/~,, 
= -  U-( 1 ~#,+lkU ) 

I,, 7 v , i,,(u) 
(3.97) 

The shape of the diffusion front (3.97) is depicted m fig. 3.6. The scaling function f~, (u) is concentrated 

0<~<1 
, 

X_ 

I . . . .  t VF ___ 
1< ~<2 j / ' ~ " ' ~  i 

L J i ~ 

Vt X 

~.>2 

/ ~. u 2 

Vt X 
Fig 3 6 Scahng functions for the average diffusion front m the three cases 0 </~ < 1, 1 </~ < 2, and 2 < /&  plotted versus the assooated rescaled 
variable The three curves m the top figure correspond to 0 </~ < 1/2,/~ = l / 2  and 1/2 </~ < i ,  respectively 
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One can compute the large-time behaviour of the average (x(t)) in on [0, +o~[ as a result of the bias 
this directed model (making use of appendix B). 

(~(t)) .SS ( tzF(tz)C ) ~( t )" (3 98) 
cos(~/x/2)/ ~r~/ 

Remarks 
* Equation (3 97) is a priori only correct in the scaling region (x-~ % t ~  % x/t" finite). However, the 
value of (P(x = 0, t)) obtained from (3 97) reads AF(p~)(t/z¢)-", which coincides with the exact result 
deduced from (3 93), 

,~(P(O, t)) = f O(W) e -w' d W -  AF(tz)(r~/t)" (3 99) 
o 

* For a fixed envtronment, it is clear that* 

x(t) = ¢t(w)t" , (3 100) 

where £,(to) is a random function of the environment (with a variance of order one). Thus x(t) is not 
asymptotically a sample independent quantity, and the diffusion front P(x, t) cannot obey a generalized 
CLT when expressed m the scaled variable x/t" (whether a CLT holds when rescaled as a function of 
x/Y is an open question). Analogously, one expects 

x2(t) - 2  ;t2. (3 101) 

(11) 1</x  < 2  The expansion of (W/(E + W)) now reads 

1 -  (1/W>E + A (Er¢)" + . . . ,  
sin 7r/~ 

leading to the limiting form of the diffusion front 

B ( x - V t ~  ¢(e(x, t))--, L - B  

~ 1 / .  

V :  ¢(1/W) -1 B = V -(~+'/") n r~ 

where L,  is a Levy law of zero mean, characterized by 

'B" 

f l = + l ,  C = A  2 sin(Tr/x/2) 

(3 102) 

Its shape is drawn in fig 3.6, the dispersion with respect to the mean poSltlOn IS anomalous in this phase 
(as foreseen above) and sample dependent" x2(t) - x-~ 2 ~ ~t t2/" (only the leading term Vt in the thermal 
average x(t) is sample independent). This anomalous dispersion reflects the trapping of a fraction of 
walkers in very deep local traps Note, however (see fig. 3.6 and appendix B), that in this phase 

*~The probaNhty distribution of ¢,(to) m eq (3 100) has recently been characterized through its moments, see [Asl90a] 
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(P(x, t)) has a tall decaying as x -" for large x. This allows one to show that (x2(t) -x - -~  2 ) - -  t 3-", In 
accordance with a recent result of [Asl90b]. Hence the average and the typical position fluctuations 
behave differently in this phase. 

(lil) /x>2.  (W -1 ) and (W -2 ) being finite, the expansion of (W/ (E+ W)) IS simply 

1 -  ( 1 / W ) E  + E2(1 /W 2) + . . .  

and thus (P(x, t)) recovers a Gausslan limiting form, 

(P(x, t)) -1/2 2 (47rDavt) exp[-(x - Vt)/4DaJ],  (3.103a) 

where V has the same expression as above and Dav reads, for this directed model, 

Day 1 
~2 2 

1 -3 2 1 
( W )  ( (W-- '~) - (W)2)  • (3.103b) 

Thus when/~ > 2, the first two cumulants of the position have a normal behavlour as a function of 
time. One should, however, keep in mind that the nth cumulant of the position remains anomalous as 
long as /z < n (since (W -n) diverges). In other words, the hmitmg form (3 103a) of (P(x, t)) only 

is of the order of -+(Dart ) ; outside this region (P(x, t)) holds in a "scahng region" in which x - Vt " 1/2 • 
has algebratc tads, which are responsible for the anomalous behavlour of the higher-order cumulants. 

Remarks 
(i) The physical meaning of the vanishing of the velocity for/~ < 1 is that the current JL through the 

sample goes to zero with increasing sample size, 

J E l L  1-1/~ , L--->oo 

while it goes to a constant for/~ > 1 
(ii) It is important to notice that the distribution of first passage times is itself a broad distribution, 

decreasing as t -(1+~') (for large t). 

3.3.4.2. Results and conjectures for the random-force model. As is made clear by the arguments and 
calculations of section 3.3 3, the directed walk model with a broad distribution of hopping rates 0(W) 
does retain the essential features of the continuous random-force model, and more generally of all 
asymmetric one-dimensional models with bond disorder [Bou89a] [the exponent /z being given in 
general by condition (3.83)]. In particular, one expects the same diffusion behaviour and the same 
analyttc expressions (3.97), (3.102) and (3.103) for the asymptotic form of the average diffusion front 
(P(x, t)). This has been proven rigorously m [Kes75] (although the proof concerns a discrete time 
model). However, the constant parameters entenng these expressions (namely C, s c, ~'~ m the phase 
/z < 1; C, B, V for 1 </~ < 2; and V, Day for/~ > 2) obviously depend on the specific model considered 
(and were not predicted in [Kes75]). The general expressions of V and Day (and of the diffusion 
constant D) have been established above (section 3.1), but no such general expressions exist for the 
anomalous phases /x < 2 One should in fact note that once the units of space and time have been 
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chosen, only the single unknown parameter C is required to characterize fully the average front for 
/ x < 2  

In the following, we review some conjectures that have been made [Bou89a] on the value of this 
parameter for the continuous random-force model (3 64). The idea is to resist on using the directed 
walk effective picture of the diffusion process at large scales in a quantttattve manner Namely, one asks 
whether it is possible to find a lattice spacing ~:, and a value of A such that the directed model of section 
3.3.4.1 reproduces quantitatively most of the diffusion properties of the random-force model (the time 
constant ~-e can be chosen to be equal to the natural time scale ~1 without loss of generality) First, start 
from the directed model with a very small lattice spacing a---~ 0, with the choice 

O(W) = ap.(W) , (3 104) 

where p,(E) is the average density of relaxation times of the random force model dlscretlzed on the 
same lattice (the continuous limit a ~ 0 of p, will be obtained m closed form in section 3.5). Then, by 
construction, (P(0, t)) coincides for both models for all t, since 

~" e -w' (P(O, t))dl r = /j O(W) dW= a Pa(W) e -w' d W -  a(P(O, t)) (3 105) 
0 0 

Let us first concentrate on the phase/x > 2. Remarkably, this implies - owing to the small-E expansion 
(3 .42)-  that the continuous directed model has the same velocity V and diffusion constant D as the 
random-force model However, Dav does not coincide for the two models since D/Dav = 1 - 1//.~ for the 
random-force model while Da, = 2D - aV/2---~ 2D in the continuum limit of the directed model The 
correct Dav would be found for a lattice spacing ~ equal to x ~ / ( # -  1), which is precisely twice the 
correlation length of the trapping times "7(x), as found in section 3.3.3.2 With this choice of ~:, one can 
define a new directed model by grouping together ~/a sites of the first one, In the hmlt a----~ 0 Thus we 
have obtained the desired equivalence, and it is physically very sensible that the "effective lattice 
spacing" should be of the order of the correlation length between traps Remarkably, in the anomalous 
phase 0 </~ < 2, the value of C is found not to depend on the chotce of ~, and one can simply work with 
~: = a. Hence one is prompted to identify A with llme~o(E.c) 1-~'p(E), which is calculated below (section 
3 3.5). This leads to the conjecture that the parameters characterizing the average diffusion front of the 
random-force model are those summarized in table 3.1 [Bou89a] The same results were recently 
obtained in [Asl90b], where the identification with a directed walk is more carefully discussed It 
follows that in the phase/.t < 1, the position obeys, for large time, the law 

(X--~) 2P~-lc([z)_2Sln 7r].L ( I ) P  
Xl 1rlz ~ , (3 106) 

which, for small/z, becomes 

X 1 2kL 2 

This k~ -2 dependence of the prefactor for small > is very important physically; indeed, one expects - as 
discussed in section 3 3.2 - that for times t < r 0 = r 1 e 1/*~, the behaviour of the particle is insensitive to 
the bias, i e ,  x -  x~ In 2 t/r I The point is that this expression correctly crosses 1~-2(t/r~) ~ for t = r 0 and 
X = X 0 - ~ - X l / l &  2 
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Table 3 1 
Scahng forms of ( P ( x ,  t ))  and diffusion behawour of the random-force model,  as a 

function of the parameter/z  = 2FoT/o- , x~ = 4T2/tr, "fi = x~ /2D o (D o = T /T)  

p ,=0  x ,  lnZ(t/rl) fo 

fo(u)=_8 ~ (-1)  ~ exp[_½~r2(2k+l)2]u]] 
qT k=0 2--~" ~ 

£, /x  x ~ ~,(to) ln2(t/71) 

f~(u)= 1 ( . . . . .  ..(c) . -1,~. 9 
- -  U L~, + t [ u  ) ,  
# 

~,/x  1 ~ ( , (w)( t / r ,  f '  

x~tl~ , ~. +~\ t l / .  ] 

V 1 x~ V_(~+~/~,) ~ = 1 - ; ,  B = - -  
3" 1 

~, ~ w, ~ - ~ ~ x ~,¢,(o4(t/~,)~'" 

1 
/~ > 2 ~ exp[-(x - Vt)2/4D~J] 

V 1 D~ ~t 

V 0 # D O /z - 2 

- - /  -2 D _ I z - ~  
x , - V t ,  x , - x , ~ 2 D t ,  D o # - 2  

C =  'tr/.t 

2"F(a) 2 sln(~'#/2) 

C=  
2~F(/z) 2 sm0r#/2) 
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Remark. A s / z  -2 is a decreasing function of the bias, one may point out a possible paradox with 
(3.106): it appears that (x--~) could be, due the prefactor, a decreasing function of the bias for 
sufficiently small times. However, it is easy to check that this is only the case for t < r 0, where the 
diffusion is loganthmlc 

3 3.5. Relaxauon and probabdity of presence at the ortgm 
3 3.5 1 Exact calculatton of (P(x, tlx, 0)) for the random-force model. A very important physical 

quantity, which may be related to the relaxatton properttes of the model, Is the probablhty of presence 
of the particle on its startmg site, P(x, tlx, 0). Its average over disorder, as we shall now briefly show, 
may be computed exactly [Bou87a] for the model (3.64) (for a more detailed presentation of the 
different calculation methods see [Bou89a, Asl90d]) 

The starting point of the method is to notice that P(x, tlXo, 0) can be decomposed into the 
eigenstates of a Schrodinger equation [G5] (see also [Sch86, Tos88, Tel89]), 

x 

tlxo 0 ,  exp(f  0F z>  n X> n X0> e En' 
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Note that, using the closure relation one has indeed 

d 2 F2(x) 
Hs& . = E . ~ b  , H s = - D °  dx - - - - 5 + - ~ 0  + - -  

H s can be written as H s = S +S, where 

d 1 
S =-IV'-~o ~x + ~ F(x) 

1 dF 
2 dx (3 107) 

(3.1o8) 

This lmphes that the spectrum of H s is positive, despite the fact that the "potential" F2/4Do + F'/2 is 
not bounded from below From a physical point of view, it means that the relaxation times of the 
diffusion process 0"n = En -1) are all positive, as expected 

From (3.107), one obtains, for all times t, 

e(Xo, tlXo, 0)=  E e , 
t t  

or, introducing the density of states p(E) = llmL_~ L l ~ 6 ( E -  E~), 

L,2 / 

(P(x o,tlxo,0))=L~hm L ' f (P(xo, tlx o,O))dx o= d E p ( E )  e -E' (3 109) 
- L / 2  0 

Thus, the density of states of H s directly yields the average of the probability of presence at the origin 
Many methods may be used to obtain p(E) The most natural one for a one-dimensional disordered 
Hamiltonlan is the Dyson-Schmldt method [Dys53, Sch57, Lie66] (e.g. used in [Fri60, Hal65, Der84b] 
to obtain the energy spectrum in a white noise potential) It relies on the well-known "node counting" 
theorem of one-dimensional quantum mechanics, stating that the number of zeros of ~be(x ) per unit 
length is equal to the number of states below energy E, N(E) = f f p(E') dE' Writing (3.107) in terms 
of a new variable u (this calculation is presented with a normalization or = 4, D O = 1), 

u(x) = [ln &(x)]' - 1F(x), 

one obtains a "Langevin equation" for u, for which x plays the role of the time, 

du 
- (u 2 + 2/zu + E) - 2u~(x) (3.110) 

dx 

[with s~(x) = ½F(x) - tz playing the role of the thermal noise]. Counting the number of zeros of ~bE(x ) 
amounts to counting the divergences of u. The quantity N(E) we want to calculate is thus exactly (in 
the large-L limit) the average current ! which counts the escape "frequency" of u i is related to the 
"asymptotic" (x~oo)  probability density Q(u) associated with the stochastic equation (3.110) by 
N(E) = l = limu_.= Q(u)u 2. One thus wntes a "Fokker-Planck" equation for Q(u, x), which in this case 
reads (see [Bou89a] for a precise discussion of the ambiguities associated with the stochastic calculus 
prescription to be u s e d -  which here turns out to be Stratonovlch's) 

o Q _ a  (2u 0 ) 
ox ou ~u (uQ ) + (u z + 21zu + E)Q 
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Once the stationary solution (OQ/Ox =0) is known, the current l(/z, E) is obtained All these 
calculations can be performed explicitly [Bou87a, 89a] and one finally finds 

• ~ 2 2 - 1  ] = --5 [J~,(V~) + N~,(V~)] , 
7'1" 

where J, and N, are Bessel functions of order/z. Reintroducing all the original physical quantities, one 
obtains 

or  2 2 

N(E) - 2~.2D2 ° [J~,(V~) + N,,(V~)],  
- 16D30 E 

2 - 2E'r I (3.111) 
or 

The hmltlng behaviour of N(E) for E-~0 and E-~oo is of special interest. First, for all /z, 
N(E) ~ (E/Do)l/2/Tr for E~o% i.e., one recovers the free-particle spectrum, this is expected since I t  

corresponds to the fact that at short times the particle diffuses freely (x <xl) .  On the contrary, the 
low-energy behaviour of N(E) strongly depends on/z, 

• ~ f 2 1 n  - 2  E ,  0 

xIN(E)E~O I(Ezl)~/2,,_1F2(#), /z/x>0.= ' (3 112) 

These results allow one to determine exactly (P(x0, tlXo, 0)) through eq. (3.109), a log-log plot of 
which is displayed in fig. 3.7 for different values of/z. In particular, the long-time behaviour reads 

2In 2 t,  /z =0 ,  
xl(P(x°'tlx°'O))-[[~/2~'-IF(lz)]b',/t)~' , ~ > 0 ,  

and thus fully confirms the physical analysis of section 3.3.3 
More information on this problem can be found in [Bou89a], where, for example, the "replica 

method" is used to calculate p(E) and the locahzatlon length A(E) associated with H s, through its 
average Green function, 

(P(x, x, - E  + i0+)) = -(d/dE)A-I(E) + 17rp(E). 

3 3 5.2 Sample to sample fluctuattons. For the disordered models considered here, P(x, t[x, O) 
strongly fluctuates from site to site [De189, Bou89a] (or from sample to sample). This is most easily seen 
on the directed model of section 3.3.4.1, for which 

e . ( t l n ,  O) = e -w"t . (3 113) 

One may thus easily estimate ([P(x, tlx, 0 ) ] q ) ,  

([P(x, tlx, O)]q)~t -~ ~ (P(x, tlx, O) )q- t  -gq , (3.114) 

which clearly displays the non-self-averaging nature of P(x, t[x, 0). In particular 

- ( In  P(x, tlx , 0)) = (W)t  . 
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Fig 3 7 Average probablhty of return to the ongm (P(O, t)) as a function of time t, m a log-log plot, and for different values of /z  Note the 
cross-over from free diffusion (for short times) to disorder-dominated diffusion at large umes 

P(x, tlx, 0) thus decays exponent,ally for any gwen sample, but ,ts average (P(x, tlx, 0)) decays as a 
power law (see also [De189]) 

Contrarily to many random systems the average (P(x, tlx, 0)) has nevertheless a direct physical 
interpretation: If one starts w~th a parUcle populaUon uniformly spread in space, ~t represents the 
fractton of parttcles sttll at thetr mtttal point after time t 

3 3 6. Summary and dtscusston 
Let us summarize some important physical consequences of the results obtained throughout section 

3 3. Clearly, all the interesting non-Brownian features arise because of the mduced broad dlstnbuUon 
of trapping times, resulting from the combination of exponentially rare events contributing exponential- 
ly to the actwatlon time 

Such an exponential distribution (Polsson distribution) of energy barriers is certainly much more 
general (see, e.g., [Ram85, Tam87]). A trapping Ume distribution with a slow power law decay thus is 
not an exceedingly exoUc posslblhty m physical systems. The followmg features are naturally associated 
with such broad distributions ~b(~-)- T - ( l + ' u )  

-diffusion fronts (and distribution of exit times) which revolve well-charactenzed Levy stable laws; 
- a  succession of "phase transmons" (where different physical quantmes become singular) as /z is 
vaned-cor respondmg to the dwergence of the successwe moments of O(z); very important is the 
transition between a "creep" phase, where the velooty is zero, and a "flow" phase in which a current 
may establish, note that m this case the velooty goes continuously to zero, which is at variance with 
other first-order depmnmg transmons, 
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-s low, algebraic relaxation of the system at long times; or equwalently, enhanced noise power 
spectrum at low frequencies. 

The model considered above has also &rect physical applications, either because the problem is truly 
one dimensional, or because it can be modelled as such in certain circumstances. We describe some of 
them in the next section. 

3 3 7 Apphcatton to phystcal problems 
3 3 7 1. Random-field Ising model. A magnetic domain wall, tf tt has a large surface tension, evolves 

in a disordered material in much the same way as a point particle (the centre of mass of the domain) 
under random forces, and may be modelled [Nee42] as a domain wall m a one-dimensional random- 
field Islng model, a problem which is indeed described by the model considered here. (For recent work 
on the dynamics of the random-field Islng model, see [Bru84, Gn84, May84, Nat88].) 

Consider the one-dimensional Ising model in the presence of a random magnetic field; its Hamll- 
tonian reads 

Y(= - J  E S, S,+I - E h,S, , (3.115) 
l l 

with S, = ±1 and 

(h,) = h ,  (h,h,) - h 2 = ~rh6,,. (3.116) 

Then a domam wall between a region of up spins and down spins (see fig. 3 8) will evolve in the sample 
according to the following transition rates (assuming single spin flip dynamics): 

Wt , + 1  - - - -  % e a~/2r , W,+L, = W o e -a~e/zT , (3 117) 

where A ~  corresponds to the change in energy accompanying the spin flip S, ~ -S," AY( = 2h, Those 
hopping rates thus precisely correspond to the model defined above, with, m this case, 

I~ = hT/m (3.118) 

Thus only if the external field h exceeds a certain critical value h c will the domain wall acquire a finite 
velocity For h < h c, the domain wall "creeps" according to the law 

(5(t)) /a ~ ( Z 2 / o ' h ) l - 2 # ( W o t )  ~ . (3.119) 

,-1 i L+l --W'+I,....._.~ I-1 I I+l 

TI 11 T r)) 11 
Wb ,+I 

Fig 3 8 Domain wall in a one-dimensional random-field Ismg model 
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This analysis allows us to discuss the following problem. Suppose that the sample has been prepared in 
the S, = - 1 state and that an external field h > 0 is suddenly applied. Then up regions will nucleate and 
expand according to the laws described above If h ~ J, the nucleation rate (corresponding to the 
creation of a + spin) is simply 

F =  W o e -J 'r  (3 120) 

The dynamics of the whole system will thus exhibit two stages (see [Bou89g]): 
Ftrst stage The system nucleates up spin regions up to a time t c defined by 

. 2 1 ( V t  c If/x > 1), (3 121a) x = a(Wotc) (T/~rh) -'-~" 

and 

(x /a )Ft  c = 1, (3 121b) 

o r  

Wot~ ~ [ e J / r ( l + U ) ( T 2 / O h )  (2~'-D/(l+u) , /x < 1, (3 122) 

[ (vr )  , ,2 > 1 

t c is simply the typical time for two growing "up" regions to meet, since eqs. (3.122) state that the 
nucleation probability within the distance spanned by the domain wall in a time t c is of order 1. For 
t ~  t c and/z  < 1, one expects the mean magnetization to scale as ( F O P ' - 1  (or FVt 2 -  1 for/x > 1) 

Second stage When t is of the order of tc, M is nearly equal to its equilibrium v a l u e  M e q  = 1 (in this 
discussion we assume T ~ J) and slowly relaxes towards it according to the law (see fig. 3 9) 

]M - M e q  [ ~ t -~' 

This stage corresponds to the rare but difficult to overturn sequences of spins (h, < 0 and large). 

3 3 7 2 Configuranon transmon tn dtsordered polymers De Gennes has suggested [dGe75] that the 
domain wall between the helix and coil phases of a "he te ropo lymer ' - see  fig. 3 10 (e g. a random 

M 

+1 

1-t -~ 

t c t 
Fag 3 9 EvoluUon of the total magnetlzatmn as a funcuon of time m 
a one-damenslonal random-field Ismg model prepared m a "down" 
state and watb an "up" magnenc field suddenly switched on at t = 0 

Fig 3 10 "'Domain wall" between two configurations of a 
heteropolymer hehx and cod "phases'* 
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sequence of two species of monomers which do not have the same helix-coil transition temperature) 
would evolve quite similarly to the Ising domain wall described above. This is simply because the free 
energy variation AF(s) corresponding to a one-monomer displacement of the domain wall is a random 
function of the arc lengths, leading to transition rates quite similar to (3.118). The latent heat released 
by such a process thus resembles very much the magnetization discussed above Note that in the 
original treatment of de Gennes, the critical value ~ = 1 separating a creep (V = 0) from a flow phase 
appears, even if the diffusion law in the creep phase was incorrectly discussed. 

3.3.7.3. Dislocation motzon m disordered crystals The motion of a dislocation in a perfect crystal 
can be modelled as the dynamics of a string on an inclined washboard (see, e g., [Hlr68]) Its downhill 
progression proceeds as follows: The string nucleates a klnk-antlklnk pair (fig 3.11a), which are torn 
apart by the external stress, until they annihilate with the neighbourlng nucleated pair (fig 3.11b), 
finally resulting in the translation of the full dislocation. The motion of the kink (or the antlklnk) is thus 
one dimensional, its progression results in an energy gain for the dislocation proportional to the distance 
travelled This is equivalent to saying that the kink's position x satisfies the Langevin equation (3.64) 
with F(x) = Fo, where ~?(t) accounts for the thermal fluctuations. 

If now the crystal contains foreign solute atoms randomly placed on the lattice, one must take into 
account the interaction energy between those solute atoms and the dislocation If one can neglect the 
motion of solute atoms (no "dynamical aging") and consider that they generate quenched disorder, one 
may argue [Pet71, Vln86] that the kink position follows eq (3.64), with F 0 proportional to the external 
stress and tr = ( F  z) -F20 related to the concentration of solute atoms and the strength of their 
interaction with the dislocation. This suggests that dislocation dynamics in disordered metals should 
reveal very rich and interesting peculiarities. In particular, the above discussion of the dynamics of a 
random-field Islng model may be partly transposed [Pet71, Vin86, Bou89g] One expects that the 
average translational velocity of the whole dislocation will behave as 

Vd,sl = a/tc , (3 123) 

where t c is defined by eqs. (3.121) (Note that the whole discussion only makes sense for Wot ~ >> 1, and 
that the kink energy J must be much larger than T, so that a "kink" is a well-defined object ) The 

o) 

F0 F0 

b) 

i m l  x 

Fig 3 11 (a) Nucleation of a kmk-antlkmk pair m a "washboard" potential (b) The kink and antlklnk get farther apart, corresponding to an 
overall translation of the &slocatlon 
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Rg 3 12 Typtcal stress-strata curve resulting from the creep motion of the kinks due to disorder, for three different temperatures (a) 150 K. (b) 
300 K, (c) 450 K We have taken the kmk-antlkmk energy equal to 104 K, and 1% lmpurmes each causing a fluctuahon of 1000 K m the kink's 

energy Note the hnear regime for small stresses and high temperatures, and the non-hnear regime for mtermedmte stresses and low temperatures, 
mimicking a power law e = tr" with large n 

resulting relation between the velocity of the dislocation (and hence in certain cases the rate of 
deformation of the sample [Hlr68]) and the applied stress has the shape depicted in fig. 3 12 (see 
[Bou89g] for more details) The plateau region could explain a similar anomalous feature observed in 
gold-doped SdlCOn 

4. Anomalous diffusion in a field of random forces in more than one dimension 

The diffusion behavlour of random barriers and random traps models has been investigated in 
chapter 2 It has been shown there that, m more than one dimension, anomalous diffusion only arises 
for the latter and, even in that case, requires an a priori broad distribution of local trapping times *) 
Various analytical techniques can be used to study the normal diffusion properties of these models in 
more than one dimension, mainly effective medium approximations (cf section 2 4.2.3) and systematic 
weak-disorder expansions The results of such an expansion for a general hopping model will be 
presented in section 4 2 3, and the reader is referred to [Der83a,b] for further information. 

* ' This holds true provided the hopping rates display no long-range correlahons 
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In the present article, we rather wish to put the emphasis on anomalous diffusion induced on large 
scales by a local disorder In this respect, the most interesting model to be studied is the diffusion in a 
field of random forces (F(x)) (type C model), a continuum description of which is the d-dimensional 
version of the Langevm equation*) of chapter 3, 

dx/dt  = F(x) + ~l(t) , (4.1) 

~7~,(t)~%(t') = 2 D o 6 ~ 6 ( t -  t ' ) ,  (4 2) 

to be supplemented with an appropriate description of the distribution of (F(X)) It will be shown 
below that this model retains the essential physics of anomalous diffusion in the presence of (narrow) 
quenched disorder (and that, in particular, including short-range correlated randomness in the local 
diffusion constant D(x) - the symmetric part of the hopping rates - does not lead to new effects) 

It is the aim of this chapter to understand whether this model retains something of its rich 
one-dimensional phenomenology, and whether new behavlour can arise in d > 1 An obvious statement 
m this respect is that the effect of quenched disorder tends to be weaker as the dimension is increased, 
since more and more paths connect two given positions. We shall mainly concentrate on the case of a 
zero average force ( F )  = 0 (the response to a small average bias will be investigated in section 4.3.3). 
Even in that case, the above question has been the subject of numerous (and somewhat controversial) 
investigations in the hterature [Mar83, Obu83, Pal83, Luc83, Fls84, Aro84, Fls85, Kra85, 86a, Bou87b] 

The original physical motivation [Mar83] was whether ultra-slow loganthmic diffusion "h la Sinai" 
can still arise in more than one dimension. The answer is, as we shall see, in the affirmative, but 
interestingly enough, turns out to depend on the type of geometrical constraints imposed on the random 
force Indeed, in d > 1, the latter is not always the gradient of a potential and, as a result, different 
physically interesting anomalous diffusion behavlour can arise. From a technical point of view, this 
model requires the use of renormahzatlon group techniques, to which a large part of this chapter is 
devoted. 

4.1 Charactertzatton of the random force field; phystcal mottvatton 

4 1.1 Geometrical constraints; range of the correlattons 
The distribution of (F(x)) will be taken to be Gaussian, characterized by its correlation function 

G ~ ( x -  y) and mean F0, 

(F(x)) = F o , ([F~,(x) - F0~,l[F~(y ) - F~0]) = G~,~(x - y) , (4.3) 

all higher-order correlation functions of ~F~, = F~, - F0~ , being a sum of products of two-force correla- 
tions. As will be shown below, possible deviations from a Gausslan distribution would not affect the 
large-time diffusion behaviour. According to the physical situation at hand, one would hke to impose 
different geometrical constraints on F(x). The most important cases in practice are (cf section 4 1 2) 

(I) independent components F~,(x) in each direction: G~,~ ~ 6~,~, 
(II) "lncompresslbdlty" constraint: dlv F = 0, 

(III) potential force F(x) = -grad  U(x) 

*~ 7 has been mcluded in the definmon of the " fo rce"  m eq (4 1), and we have set T/y = D o, the " b a r e "  diffusion constant 
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More generally, we shall allow F(x) to be an admtxture of an incompressible (transverse) part and of a 
potentml (longitudinal) part without cross-correlations. This is most easdy expressed on the Fourier 
transform of Gu, (x -  y), 

G.~(k) = GT(k2)(6.,, - k . k~ /k  2) + GL(k~)k~ k~/k 2 (4 4) 

The particular cases (I), (II) and (III) correspond to G x = G c, G L = 0 and G T = 0, respectwely Typical 
two-dimensional realizations of a random field sansfymg one of these constraints (with F 0 = 0) are 
depicted schematzcally m fig. 4.1 (taken from [Kra85]) A tracer described by the Langevm equation 
(4 1) moves m this quenched field by convectton along "flow hnes" of F(x) and molecular dtffuston 
between these hnes under the action of the thermal noise ~/(t) The competmon of these two effects 
controls the diffusion propemes of the tracer It is physically obvious that these properties can be very 

® 

Q 

Ftg 4 1 Typical configuratton of a random force field m the followmg three particular cases (I) G r = G L uncorrelated components, (1I) G L = 0 or 
dry F = 0 mcompresslble flow. for which the flow hnes close (possibly at mfimty), ( In)  G T = 0 or F = -grad  V potential case, for which sinks act as 
traps for the thermal pamcle 
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different for different geometrical constraints, and that models II (incompressible) and III (potential) 
are two extreme cases" in the former, fast convective motion along closed flow lines is possible, while in 
the latter the tracer is convected into local wells, from which it can only escape by thermal activation. 
An admixture of G T and G L allows two nearby flow lines to be of opposite directions, and thus the 
tracer to escape more easily, leading to some intermediate diffusion behavlour. These qualitative 
statements will indeed be confirmed by calculations 

The last point to be defined to characterize the model fully is the space dependence of G,~(x) Only 
the long-&stance behavlour will turn out to be important for the asymptotic diffusion properties As will 
be demonstrated in the next section, the description of certain physical situations require spatial 
long-range correlations of F(x) to be considered [Mar83, Pe185, Bou87b]. We shall characterize their 
decay by an exponent a (common to G x and G L ) ,  

GT,L(A(x--y))--A-aGT L(x--y) for , ~  (4.5) 

-Short-range correlations correspond to an lntegrable correlation function (cf section 1 3 1) and thus 
to a > d. In this case one has 

GT,L(k 2 ) -  aT.L, k 2 ~ A 2 , a > d (4.6a) 

- Long-range correlations arise when a < d and are such that 

G. rL(k 2)-o-T,L(k2) -(a-a)/2 , k 2,~A z, a < d  (4.6b) 

In these expressions, A -1  denotes a short-distance length scale 

4.1 2 Some physical mottvattons 

4.1 2.1 Turbulent dtffuslon: a quenched descriptton. One can think of describing the relative *) 
diffusion of a pair of particles in a turbulent flow by the Langevin equation (4 1). F(x) should then be 
thought of as the difference between local velocities of two nearby points at a distance x, and subjected 
to the incompressibility (type II) constraint div F = 0. The limitation of this description is that the 
turbulent relattve velocity field is considered to be quenched (time independent) - a point to which we 
shall come back below. Describing the statistical propemes of the relative velocity field F(x) is a central 
problem in all theories of turbulence. A widely used form IS (see, e.g., [Mon71]) 

G T ( R  ) ~ ~ e / a R 2 / 3 ( R / l o )  ~'/3 ' (4.7) 

for relative separations R in the range I d ~< R ~< 10, I d being the dissipation length scale and l 0 the stirring 
length scale (below which the turbulent cascade is initiated), f denotes the mean energy input. The 
value /z = 0 corresponds to the 1941 Kolmogorov theory, while more refined models [Man74, Fr178] 
taking into account intermittent corrections at small length scales lead to /z = d -  dE,  d F being the 
fractal dimension of the active region As far as diffusion properties are concerned, the important 
feature of (4 7) is that the velocity field displays long-range correlattons which are increasing with R in 

*) Relattve &ffuslon Is considered m order to get nd of the overall motion of the fluid In pamcular (F)  = 0 
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the range l d ~ R ~/o ,  the exponent a defined by (4 5) being here 

a = - ~ - / z / 3  (<0 ) .  (4.8) 

Turbulent diffusion has been the subject of numerous studies, both experimental and theoretical, which 
were initiated by Rlchardson's pioneering paper [Ric26] suggesting a hyperdlffUsive law ( in three- 
dimensional atmospheres) 

R e ( t )  ~ t3 (4 9) 

Anticipating on the results of this chapter (section 4.3), it turns out that the diffusion exponent resulting 
from (4 1) with long-range correlations (a < d, here a < 0 and d = 3) can be calculated exactly when the 
incompressibility constraint dlv F = 0 is satisfied, and reads v = 2/(2 + a) for a < 2 Inserting the value 
(4.8), this leads to 

R : ( t )  ~ t 2'' , 2v = 3 + 3/.t/(4 - / z )  (4.10) 

This result is of course not new" it 1s well known that Rlchardson's law results from Kolmogorov's 
theory, and the b~-dependent intermittent corrections in (4 10) were derived by Hentschel and 
Procaccla [Hen84], who claimed that the data of Richardson's original paper are best fitted with a 
non-zero b£ (=0.36), see fig. 4 2 Nevertheless, describing turbulent diffusion by the model (4 1), (4 2) 
with a quenched random velocity field is to our knowledge an onginal suggestion of the present paper* I 
It could in particular be a fruitful starting point for predicting the full d i f f u s i o n  f r o n t ,  an important issue 
for comparison with experiments 
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Fig 4 2 Rachardson's data for the scale dependence of the effective diffusion coeffioent D(R) as a function of R for turbulent diffusion (m the 
atmosphere), showing that R 2 = t 3 Note that the data are best fit by a shghtly stronger exponent, which can be accounted for by the "lntermlttency 
corrections" to Kolmogorov's theory [Fn78, Hen84] 

*> It is remarkable m this respect that the result (4 I0) prevtously deduced basically from dimensional analysis turns out to be exact for th]s 
model 
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It should be noted that the assumption of a time independent relatwe velocity field is reasonable up to time scales of the order 
of the correlation time tR, which can be estimated as [Hen84] 

t R ~ ~-I/3R2/~(R/Io)~/3 

Beyond this (R-dependent) time scale, model (4 1) no longer applies, in this regime, Hentschel and Procacoa have suggested a 
different &ffuslon exponent, 2v = 3 + 3/z/(1 - / z )  However, because of the R-dependence of t a, these two regimes should not be 
viewed as short- and long-time regimes, and the "quenched" one, eq (4 10), turns out to be the relevant one m some 
experimental situations [Hen84] 

Finally, one should mention that other descriptions of the turbulent diffusion problem have been 
proposed, e g usmg Levy flxghts (see [Sh186, 87] and references thereto). 

4 1 22. Relaxation m systems wtth complex energy landscapes One can think of (4.1) with 
F = -grad U (model III) as a very ideahzed description of the relaxation properties of a system with a 
complex form of the energy U(x) as a function of position x in configuration space. Relaxation is indeed 
connected to the properties of thermally activated diffusion in this complex energy landscape (fig. 4.3). 
With disordered magnetic materials (such as spin glasses [Bin86], for example) m mind, this description 
is of course quite far from reality for the following reasons: 
-The  topology of spin configuration space (hypercube of large dimension) is quite different from the 
euclidean space at hand here 
- Describing the energy landscape by a (quenched) random potential ignores much of the complexity of 
the system. 
-Describing the evolution of the system in terms of hopping between nearby configurations in phase 
space discards the possible collective modes which may contribute sigmficantly to the relaxation 
properties (e g. the domain walls). 

However, one can hope that some of its consequences are sufficiently "universal" to see this model 
as a useful guide. Indeed, strong evidence will be gwen below that, when correlauons are suffictently 
long ranged, model (4.1) with a potential force &splays logarithmic diffusion "h la Sinai" m arbitrary 
dtmenston [Bou87b, Mar83] (for (F )  = 0), 

(x2(t)) ~ (In t) 4/(2-a) , a < 2 .  (4.11) 

~ENERGY //~ 

"PHASE-SPACE COORDINATE ~ 
Fig 4 3 Schematic plot of the energy versus a "coordinate" descnbmg the microscopic state of a complex system (e g a spin glass) 
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That (4.11) holds in this case was indeed suggested in [Mar83] and motivated several further works 
on this model. It is tempting to relate the very slow low-temperature relaxation [Oc186, Ref87a,b, 
Fer89] observed in systems such as spin glasses (below Tg) to such ultra-slow logarithmic diffusion in 
configuration space. It was pointed out in [Mar83] that the latter generates low-frequency " l / f  noise" in 
the autocorrelatlon function, and thus in the noise spectrum, 

T 

hm dt e ' i ' x  (t) (In f)4/(2-.) (4 12) 
T-',~ f 

0 

One should note that the condition a < 2 simply means that potential correlations (and thus the typwal 
energy barrier) grow wuh dtstance, since ( U ( 0 ) U ( x ) ) ~  x 2-~ (see also [Fis88, Bra88a] for somewhat 
related ideas) 

Whether this is a realistic assumption when describing the energy landscape of, e g ,  a spin glass is to 
a large extent an open question (in [Bou87b] it was argued that this is indeed the case of the energy 
correlation in the Sherrlngton-Kirkpatrlck model of a spin glass, at least for a wide range of distances) 
One should note that even if potential correlations grow only up to a "length" scale L, the cross-over 
time below which logarithmic diffusion applies (inverse of the frequency above which 1/f noise is 
observed) can be huge at low temperature since 

t~ ~ exp(L ~-~/2/kT) (4 13) 

An Interesting Issue connected with this model is the effect of a non-zero bias ( F )  (e g ,  an applied 
magnetic field for a spin system) Whether successive phases exist as in the one-dimensional case 
(chapter 3) is an open question. Let us finally mention that some attempts have also been made to 
describe dynamical properties of spin glasses above Tg through diffusion properties in configuration 
space [Cam85, 86]. The reader is referred to, e.g., [Ste87] for a discussion of recent ideas on the 
modelling of dynamical properties of systems with a complex phase space 

Other possible applications of model (4 1)-(4 3) have been suggested in [Fis84, 85, Kra85, 86a, 
Aro84] 

4 2 Relevance of dtsorder; weak-dtsorder expanstons and their fatlure 

4.2 1 Stattsttcal mechamsm and relevance of weak disorder 
4 2.1.1 Heunsttc dtscusston The statistical mechanism which can lead to anomalous diffusion for 

this model (in the absence of an average bias) is the mduced correlatton in the temporal sequence of 
random forces seen by the walker This is possible because the same value of the random force will be 
seen each time the walker visits a given site (quenched disorder) This was already demonstrated on the 
example of a layered medium in section 1 3 2 (which is indeed a particular anlsotropic limit of the 
model considered here) 

A simple statistical argument can thus be used to understand in which cases anomalous diffusion will 
arise Consider first the case where no long-range spanal correlations are present a priori in the random 
force field (a > d), and ask how weak disorder will affect a normal Brownian walker in the medium 
The number of dtfferent values of the random force encountered by this walker in a time t is of order 

t ~/2 I n d < 2 ,  t/lnt i n d = 2 ,  t i n d > 2 ,  
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each one being encountered t ~-d/2, In t and a constant number of times, respectively. Thus a long-range 
temporal correlation m the sequence of forces encountered is induced only in less than two &mensions  
More precisely, the extra displacement induced by weak disorder (treated perturbatlvely) is predicted 
by this argument to be of order 

~X t 
i IvY, 

= dr  F ( ~ ' ) - ] l n t ( t / l n t ) l / z - v - i - - ~ t ,  
L t l - d /2~ / -~  ~ t l - d / 4  ' 

in d > 2 ,  

in d = 2 ,  

in d < 2 ,  

where the sum of correlated variables has been analyzed along the hnes of section 1 3 1 Thus, weak 
disorder will modify only the diffusion constant without changing the diffusion law for d > 2 [Pal83]. 
For d-< 2, on the contrary, ~x, is found to be much larger than VT, indicating a failure of the 
perturbatlve approach and the occurrence of anomalous diffusion. This will indeed be confirmed by 
systematlc weak-disorder expansions of the next section (section 4 2 2). 

This line of argument is easily generalized to the case where long-range spatial correlations are 
present [Bou87b]. Then, following the remarks of section 1 3.1, the random forces present in a sphere 
of radius R can be grouped i n t o  Rd/N,d  effectively independent "families" of Nld "almost identical" 
values, with 

R 

f r d-1 dr ~ const , a > d 
N,d ~ --a " ~  ~,-,d-a ' (4.14) r R~°~tt~ , a < d .  

Thus, a > d and a < d correspond to the regimes of "short-range" and "long-range" spaual correlations, 
as expected The above analysis is unchanged in the former case (a > d), while, when a < d, one has 
Ra/N,d ~ R a independent values of the force, and a simply replaces d in the above analysis One thus 
concludes [Pe185, Bou87b] that when long-range correlations are present a priori in the quenched 
random force field, dtffuston can be anomalous m any dtmenston provtded a < 2 (The relevance of such 
correlations to actual physical situations has been emphasized above.) 

The conclusions of the present analysis (and the more detailed results provided by the R.G method) 
are summarized in fig 4 4. 

2 -- 

SHORT 
-RANGE 

g~X'~@ LONG - 
ED "~ -~ /  RANGE 

V , 
2 

Fig 4 4 Regmns of the (d, a) plane (d is the dimension of space, a the exponent governing the decay of correlations) where disorder is "relevant", 
1 e ,  changes the diffusion exponent v to a non-tnvlal value # I / 2  e expansions can be performed near a = 2 or d = 2, note, however, that, when 
both a, d are close to 2, a simultaneous expansion m 2 - d and 2 - a is needed, yielding new regimes m the phase diagram ("mixed" phase) 
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4.212. Self-conszstent approximation (it la Flory) of the diffusion law. Having identified the 
statistical mechanism as an induced long-range time correlation, one can try to push further the above 
argument, and devise a Flory-hke approximation of the diffusion behavlour (much along the same lines 
as in section 133) .  Assuming a diffusion law x 2 - t 2~, the number of effectively independent values of 
the random force encountered by the walker in a time t reads 

Nefe~min(t,[ t re) l f a > d ,  (4 15) 
mln(t,t  ~a) i f a < d .  

The overall displacement can thus be estimated in the usual way as 

w 

(x~) - ( t /Ne f f )V~  . , (4,16) 

which, self-consistently, must be of order t ~ This leads to 

~1/2,  d > 2 ,  
Vappro~=[2/(2+d), d < 2 ,  a > d ,  (417a) 

1/2,  a > 2 ,  
/lapp r°x= 2 / ( 2 + a ) ,  a < 2 ,  a < d  (417b) 

This approximation (according to which hyperdiffuslon arises in all anomalous cases) will turn out to be 
quite poor in general, since I t  neglects all trappmg effects (induced by the "potential" component of the 
force) They make the visited sites highly lnequlvalent, and the corresponding weights should be 
included in the sum (4 16). However, remarkably enough, (4 17) turns out to be exact for incompress- 
ible (type If) force fields dlv F = 0 [Hon88a] (see also [For77]). This is not unexpected since In this case 
the stationary probability distribution is constant, and the visited sites are indeed equivalent. 

4 2 2. Perturbattve treatment of the disorder 
4.2.2.1. Systematlc expansion We now turn to more quantitative methods and show how a 

systematic perturbatlve treatment of the disorder can be made for model (4.1). We shall keep a 
non-zero (F )  = F 0 for completeness As in section 3 1, the basic quantity to be considered is the 
Laplace transform P(x, y, E) of the probability of presence P(x, tly, 0), which IS a Green function of 
the Fokker-Planck operator, 

- D  O AP + V. (FP) + EP = 6(x - y). (418) 

Introducing the Fourier transform 

f elk Xp(x, 0, E) 
ddx 

P(k, E)= 

(4.18) is converted into an integral equation, 

P(k,E)=Po(k,E)(1-1k.f ddq 8F(q)P(k-  

(419) 

q, E ) ) ,  (4.20) 
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Po (-k,E) = Do "~2+ i Fo-k'+E] "I 

kfl~ FC daq -[ 6-~F(q)P(k-q)] _q PoG) 0( )d T" 
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o) 
Fig 4 5 Diagrammatic rules for a fixed environment (a) Propagators and interaction vertex (b) Graphical representatmn of eq (4 20) 8F ms 
treated as an external source and an mtegratmn ms earned out over the attached momentum (c) The perturbatwe expansmn 

where P0(k, E) = (D0 k2 + iF 0 • k + E) -t  is the "free" Green function m the absence of disorder and 
aF(x)  = F (x )  - F o is the random part of the force. 

Equation (4.20) is the starting point of a perturbative expansion in powers of gF, which is simply 
generated by iteration. This expansion is conveniently represented graphically, as shown In fig 4.5. 

Deriving the diffusion behaviour from the large-time limit of the fixed configuration problem is 
rather hard, and it will be convenient to consider disorder-averaged quantities (keeping in mind the 
possible subtleties associated with fluctuations, mentioned in chapters 2 and 3). Owing to the Gaussian 
form of the distribution of gF, the average over disorder of the perturbation series of fig. 4.5 amounts 
to a pairing of external force lines in all possible ways (Wick's theorem), as depicted in fig. 4.6. This 
expansion can be conveniently reorganized in the form 

<P(k, E))  = [D0k 2 + iF 0 • k + E - Z(k, E)1-1 , 

k 
G.v([) o) 

(4.21) 

" -  " 2 2 "  ' f - '~#"  - ' X  
~ " "' "'-" (- '" /," ",': / t~ b)  <P( ,E)> = ~ + : ~ = ' - + ~ ~ + 4- ~ + . 

~ m ~  

Y__(~E) = ," "' + r '? "~"~ + , 

Fig 4 6 Diagrammatic rules for the dtsorder-averaged Green functions (a) Propagator of the random force, the radices/~ and v are contracted with 
the incoming momenta at the vemces (b) Perturbatwe expanmon of (P(k, E)) (c) Perturbatlve expanmon of the self-energy (one-particle 
irreducible graphs) 
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where the "self-energy" ,~(k, E) involves only diagrams which cannot be disconnected by cutting a P0 
propagator ("one-particle irreducible" diagrams, see fig 4.6c) 

4 2.2.2. First-order correcUons to the dtffuston constant and the fadure of natve perturbattons. The 
above expansion can be used to obtain the disorder-induced corrections to the diffusion constant. For a 
zero external bins (F 0 = 0), Dav IS easily seen to be given by 

Day = D( , -  O2~/Ok2[~_E= o (4.22) 

The first-order contribution to the self-energy is obtained from the first diagram in fig 4 6c as 

~(1)(k, E )  7- --f daq k~,G~(q)(k~ - q ~ )  

(2~-) d Do(k ~ q~ + 1-~o [-(k--q) + E 
(4.23) 

This expression is then expanded up to second order in k to yield, for F 0 = 0 [Aro84]*), 

Day ( 1) 1 f ddk GT(k 2) l l f d a k  GL(k 2) 
D,, - 1 +  1 - 3  Do 2 (2.n-) a k 2 d Oeo (2~r) d k 2 (4 24) 

Thus, the transverse (incompressible) part of the random force increases D, while the longitudinal 
(potential) part decreases it, this is expected on physical grounds, as emphasized in section 4.1.1. 

The most important remark to be made on (4.24) IS that the corrections to D/D o are found to &verge 
(for d -< 2 when a > d, and for a -< 2 when a < d). This is due to the small-k ("infrared") singularities of 
the integrals in (4.24), as is clear from the small-k behavlour of GT.L(k 2) given by (4.6) This failure of 
naive perturbation theory is of course the signal of the occurrence of anomalous diffusion; this fully 
confirms the analysis of the previous section as summarized in fig. 4.4 More sophisticated methods 
have to be used to study this anomalous diffusion behavlour; this is the aim of the renormalizatIon 
group reviewed in section 4 3 

4.2 2 3. Connecuon with critical phenomena As emphasized in chapter 1, the large-time limit of a 
random walk process can in fact be viewed as a crtttcal phenomenon. Indeed, in this limit, a CLT 
applies and (P(x, t)) takes a scaling form characterized by a few relevant parameters within some 
attraction basin ("universality class") Table 4 1 summarizes this general connection In this flame- 
work, anomalous diffusion appears as a departure from mean-field (Brownlan) behavlour and is 
signalled, as is well known for critical phenomena, by long-distance divergences in the naive perturba- 
tion approach Note that, at finite time (non-zero E), an infrared cut-off kml n --Vr-~-D0 IS present, 
which defines the critical (anomalous diffusion) regime at the mean-field level as 

t > A-2/Do (molecular diffusion time) (4 25) 

In an analogous way, a non-zero average bias also introduces a cut-off km,  n ~ Fo/D o, even if the 
infinite-time limit E = 0 is taken first. This is because the presence of an average bias destroys the 
mduced long-range Ume correlatton (cf. section 1 3 2 and section 4 2 1 1) Thus the hmlt F 0--~ 0 at E = 0 

*) It is understood that these integrals imply a short-distance cut-off kma x - A 1 Note that fluctuations are expected to be weak above the critical 
dimension, so that D is indeed obtamed despite the averaging procedure (D.v = D) 
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Table 4 1 
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Diffusion process Phase transition 

Probablhty of presence P(x, E) 
E 
t--+ oo (E~0)  
Central hmlt theorem (P(x,E))--,Ixl~7[Ixl/~(e)l 
Diffusmn exponent ~(E) ~ E ~ (Ax z ~ t :~) 
Probability conservation fddxP(x, E)= 1/E 
I = ,,(2- "0) (one single independent exponent) 
Brownlan diffusion v = ½. "0 = 0 
P0(L E) = (O0k ~ + E) -~ 

Spm-spm correlation (S(O)S(x)) r 
T-T~ 
T ~  T¢ 
Cntlcal scaling form (S(O)S(x))-IxI~-~-TII,I/~(T)I 
Correlation length critical exponent st(T)~IT - Tel 
Divergence of susceptlbdW X = J" ddx ( S(O)S(x) ) ~ IT-  T~J -~ 
3' = v(2 - n )  

Mean-field (Gaussian) behawour v = ½, ~/= 0 
(s(o)s(k)) =(k~+ T -  T) ' 

is a l so  a c r i t i ca l  l imi t ,  d e f i n e d  b y  (a t  t h e  m e a n - f i e l d  l e v e l )  

P e  - A - 1 F o / D o  ~ 1 .  (4 .26 )  

T h i s  d i m e n s i o n l e s s  n u m b e r  is k n o w n  as t he  m t c r o s c o p i c  P & l e t  n u m b e r  o f  t he  f low,  a n d  P e  ~ 1 de f i ne s  

t h e  r e g i m e  in w h i c h  d i f f u s i o n  e f f ec t s  d o m i n a t e  o v e r  c o n v e c t w e  e f fec t s  

4 2 2 4 Formulatton as a zero-component field theory the rephca trick It is most convement to have a more global 
representatton of the above perturbation series To th~s arm, one can introduce the generating function 

Z[J,  J] = fDgo D~ exp(iS(go, ~ ) +  f ] g o +  f J ~ ) ,  (4 27) 

where go(x) and ~(x) are independent fields h la Martm-Slggla-Rose [Mar73, dDo78], and the action S reads 

S(go, ~) = f ddx ~b[Ego - D O Ago + V" (Fgo)] (4 28) 

It Is easily seen, by successive integration over 4) and ~, that 

8 z 
P(x, y, E) -= -1 8J(x) 8](y) In Z[J, 3]l,=J=0 (4 29) 

The perturbatwe expansion of (4 29) indeed coincides with the rules of fig 4 5 for a fixed configuration (SF) *) 
Averaging over disorder of eq (4 29) is made &fficult by the logarithm on the r h s A way to overcome this &fficulty ts to use 

the celebrated "replica trick", which rehes on the identity 

In Z = hm [(Z N - 1)/N] 
N ~ 0  

Computing Z N leads to the introduction of N copras (goa, q~a), a = 1, , N, of the fields The average over the Gausslan force 
can then easdy be taken, and one finally obtains [Kra85, 86a, Bou87b] 

1 (go ( ) (y))sa v (4 30) (P(x,y,E))=hm~ "x~" , 

S~.[go, ~ ° ] ° = d x (Ego go + Do O~go O.go - Forgo .go ) 

1 d~x ddy go°(X) O.go ( ) G f i x - - y ) g o b ( y ) O . ~ b ( y )  (431) +~ 

*)The Fokker-Planck operator is not a Hermltian operator, and the global convergence of the mtegratmn (4 27) could be questionable 
However, we shall only be concerned with its perturbative meaning 
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The perturbation expansion in G ~  of this field theory coincides with the rules of fig 4 6 In particular, the zero-component limit 
taken order by order cancels all closed loops of P0 propagators (which were indeed absent in fig 4 6), much in the same way as 
for the self-avoiding walk problem (section 1 3 3, and [dGe72]) A different field-theoretical representation of this problem can be 
used, e g ,  by keeping an explicit time dependence [Fis84, Pel85] 

4 2 3 Weak-disorder expansions for general latuce hopping models 
For the sake of completeness, we shall quote here the results of a weak-disorder expansion due to Derrlda and Luck [Der83b], 

valid for a large class of hopping models on discrete lattices described by the master equation (2 1) The hopping rates W. are 
decomposed into a translatlonalty lnvariant and a random part, 

W~ = W,,(x - x') + 8 W  (4 32) 

No assumption is made on the symmetry of 8 W ,  nor are the jumps restricted to nearest nelghbours only However, it was 
assumed in [Der83b] (for the mere sake of slmphclty) that the pairs (SW~x, gW ~) were independent random variables from hnk 
to hnk This, unfortunately, does not allow one to zmpose various geometrical constraints such as (4 4) (except when G L = GT) 
The technique used in [Der83b] is a generalization of the steady-state technique for a perlodlzed sample introduced by Derrlda 
for d = 1 in [Der83a] and briefly presented in section 3 1 1 

Here, we only quote the results for the expansion of the velocity V and diffusion tensor D up to the first non-trivial order in 
the disorder, l e .  up to order n = 2 in the moments. 

Qp(X - x') = (SW~Y ~W~, ' ~) (4 33) 

The results of [Der83b] read* 

V = ~. z Wo(z ) + ~ z.[C2o(Z ) - Cz~(z)]I(z ) , (4 34) 
z z 

l 1 1 
D = ~ ~: z z~Wo(z) + ~ ~ z.z~[Ceo(z ) + C2~(z)]l(z) + ~ ~: [z.y~Wo(y) + z~yuWo(y)][Czo(z ) - C2~(z)]J(z) . (4 35) 

where l(z) and J(z) are integrals over the Bnllouln zone B = [-7r. 7r] 

( d q  e ' q : -  1 
l(z) 

.J (2~) a l~o(~---~, (q  ) ' 

( daq e 'q~ - 1 
J(z) 

J (2~r)" [~¢0(63~-.(q)] ~ '  

with l~0(q) = r .  Wo(z ) e ~q'~ The expansion of the velocity was in fact given up to n = 4 in [Der83b] 
This expansion can be applied to the random barrier model (symmetric disorder Wx., = W~,~), for which It has been mentioned 

in section 2 4 2 2 that no exact expression of the diffusion constant is known in more than one dimension It is then found that the 
effective medium result D = a2/WE~aA with WEM A given by (2 53) Is exact in first order [Der83b] 

When apphed to asymmetric disorder, infrared divergences are found below d = 2 [Der83b], of the same nature as those 
described m section 4 2 2 2 for G L = G T and short-range correlations As far as large-time diffusion properties are concerned, the 
continuum model (4 1) retains all the important features of the original lattice model, provided one identifies 0.T = 0.L = 0. with 

x x v [ C z o ( X  ) - C21(x) ] oc o 6  (4 36) 
r 

]Note that eq (4 24) for D Is recovered by taking the continuum limit of (4 35)] Remarkably, a "critical phase" with V = 0 (cf 
section 3 3 2) is correctly predicted by the expansion in one dimension [Der83b] 

4 3 A n o m a l o u s  di f fusion behavtour  f r o m  renormahzauon  group methods  

4 3 1 The renormahzat ton  group strategy 
4.3.1 1. Basic ideas Q u a n t i t a t i v e  ana lys t s  o f  the  a n o m a l o u s  d i f fus ion  laws a r i s ing  w h e n  d i s o r d e r  lS 

,7 The lattice spacing has been set equal to one m these expressions 



J -P Bouchaud and A Georges, Anomalous dtffuslon In disordered medla 225 

"relevant" is best handled by renormahzation group (RG) methods. The main ideas on which these 
methods rely can be summarized as follows. A detailed introduction to renormahzatlon group Ideas in 
the context of equilibrium critical phenomena can be found in a number of textbooks. Apphcatlon to 
dynamics along lines very similar to those followed here can be found in [Hoh77, Ma75, For77]. 

(i) Since large-time diffusion behaviour depends only on large-scale features of the problem at hand, 
one would like to define a "large-scale effective dynamics" by integrating out short-distance degrees of 
freedom To do so, it is convenient to work In Fourier space and to separate the modes In two shells, 
0 < k < A/b and A/b < k < A, where b is some arbitrary scaling factor and A the short-distance cut-off 
Accordingly 

P(k, E) = P<(k; E) + P>(k; E), (4 37) 

where P< (P>) is non-zero in the shell [0, A/b] ([A/b, A]) only. One would then hke to express 
P>(k, E) as a function of P<(k; E) and F(k) by solving the integral equation (4 19) This would allow 
one to obtain an equation satisfied by P<(k, E), of which all modes k E [A/b, A] can be eliminated by 
averaging over the corresponding modes of F(k). 

(11) This large-scale dynamics for P<(k, E) is then compared to the original one by making a scale 
transformation, 

k'= bk, E' = c~(b)E , (4 38) 

such that the range of k'  is again (0, A). At this stage a(b) is an arbitrary function The renormahzation 
group transformation ~b of the parameters ~ = (Do, trT, tr L . . . .  ) specifying the model is then obtained 
by requiring that 

k < A/b ,  (P(k, E; ~))  - a(b)(P(bk, a(b)E, ~b(~ ) ) )  (4.39) 

(The factor a(b) multiplying P on the r.h.s, is dictated by the conservation of probability (see table 4 1), 
which also insures that the "critical point" remains at E = 0 without being shifted.) 

(lii) This procedure is carried out m a recurstve way This in principle requires one to extend the 
parameter space ~ to Include all new parameters generated by the process. (In fact, in favourable cases, 
only a finite number of relevant parameters need to be retained, see below ) The function a(b) is then 
determined by the requirement that ,a  fixed pomt ~ * =  ~b (~* )  iS reached when the procedure is 
carried ad infinitum. This is equivalent to saying that (P(k, E)) obeys a generalized central hmu 
theorem Indeed, let us assume for simplicity that a(b) behaves as a power law for large b, 

a(b)~ b ~/~ (b--~) .  (4.40) 

Then, taking the limit b ~  in (4.39) in such a way that a(b)E remains constant [e .g,  a(b)E = 1] 
leads to 

1 
(P(k, E, ~))  E ~  2 (P(k/E~' 1, 9a*)),  (4.41) 

k---~O 

which is, in Fourier-Laplace space, the very expression of a generahzed CLT, u being the diffusion 
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exponent. ~(b) need not be a pure power law for large b, in which case k / U  is replaced by ka  1(1/E) 
( a -  1 being the reciprocal functton) and the diffusion behaviour is not a pure power law of time. Note 
that the r.h.s of (4 40) involves only quantities at the f i xed  p o m t ,  which insures the umversahty  of the 
limiting scaling form of (P(x,  t ) )  within the attraction basin of ~* .  

(iv) A fourth step involves the analysis of the attraction basins and of the stability of the different 
possible fixed points. Normal diffusion corresponds to a "Gaussian fixed point",  for which a(b)  = b 2 
and such that the scaling function is Gausslan (normal CLT). Anomalous diffusion is associated with 
the occurrence of a non-Gausslan renormahzation group fixed point 

In practice, however, the limitation of the method lies in step (i). Indeed, solving for P> reqmres 
one to handle the integral equation (4 19) [if one could solve it exactly, there would be no need for any 
of the subsequent steps (l l)--(IV)I].  The crucial point is that perturbative methods can now be safely 
used, since one has to deal only with modes in the shell [ A / b ,  A], thereby avoiding infrared 
divergences. However, this lmphes that non-trivial fixed points can only be Identified consistently by 
perturbative techniques when they depart from the Gausslan fixed point by an lnfimteslmal amount In 
fact, only a systematic expansion of the fixed points and associated diffusion exponents in the small 
parameter 

e = 2 - d ,  f o r a > d ,  e = 2 - a ,  f o r a < d  

(measuring the distance from the critical boundaries in fig 4 4) can thus be devised in general. This is, 
however, only a limitation of a technical nature, and the fundamental concepts of the renormahzatlon 
group (together with their probablhstic meaning) are in no way limited to perturbative methods. 
Indeed, we shall see below that in some remarkable cases, the anomalous diffusion behavlour of model 
(4 1) can be analyzed beyond the framework of e-expansions 

R e m a r k .  The above presentation of the RG method is meant to emphasize its probabilistlc content. 
It is also somewhat closer in spirit to Wllson's original ideas (see, e g ,  [Wil74]) and to real-space 
approaches. However, beyond one-loop order (and all the more if one wants to handle properties of all 
orders) it is most helpful to make use of a field-theoretic formulation along the lines of, e . g ,  [Bre76]. 
The replicated field theory (4 31) - or related formulations - is in this respect a very convenient starting 
point. This is the approach followed in most papers quoted above. 

4 3 1 2 One-loop calculations Step (1) Of the RG program is conveniently carried through perturbatlvely using the 
diagrammatic representation established in section 4 2 2 1 The main steps are illustrated by fig 4 7a-f The integral equation 
satisfied by P> (fig 4 7a) is used in the one satisfied by P< (fig 4 7b) to obtain an expression of the latter in which P> has been 
eliminated up to some desired order (fig 4 7c) One then averages over the modes A/b < k < A of the random force The integral 
equation obtained in this way (fig 4 7d) is then compared to the original one One sees that they can be put in a similar form, 
provided the bare two-point function is corrected by a self-energy term, and interaction with the random force is corrected by the 
last two diagrams of fig 4 7d (the last one being a non-local correction) 

This can be turned into a correction ~b D to the diffusion coefficient and ~btrt, ~bO'L to the correlator of the random force, 
associated, at first (one-loop) order, with diagrams 4 7e and 4 7f, respectively All momentum integrations involved in these 
diagrams are restricted to the shell A/b < k < A, and are thus convergent As an example, the correction ~b o can be simply read 
off from (4 23), 

~b D Ad-2C d 1 -- b -(d-2~ 
- - 0 2  [ ( 1 -  d-a)o-r- d - l o ' L ]  - -  D d - 2  

c a = 2 ~-dTr-d/z/F(d/2) (4 42) 

Replacing A d-2 by A °-2 and b -Id-2) by b ~° 2), one obtains the corresponding expression for a < d It turns out to be useful to 
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define dimensionless couphng constants by 

~A d-2 
O ' T ' L  Ca(1 - -  d - l )  x ~A,-2 ' a > d ,  (4 43) 

g ~ L = - - ~  , a<d  

Performing the rescahng (4 37) of space and time is then a simple matter of dimensional counting Since x'2/t ' = [a(b)/b2]x2/t and 
A d-2 = (A/b)a-Zb d-z, the RG transformation of the parameters D and gT L reads 

~b(O) = [a(b)/bz](O + 8bO ) , 
(4 44) 

~b(gTL) =b2-d(gTL+~bgTL ) ( a > d )  

(d being replaced by a m the last equation in the case a < d) 
We shall now quote the result of explicit calculations of this RG transformation, up to two-loop order for short-range 

correlations (a > d) [Luc83, F]s84, 85, Aro84, Kra85, 86a] and up to one-loop order m the long-range case a < d [Pe185, Bou87b, 
Hon88a] (the two-loop result was obtained recently for the latter case as well, see [Hon88a]) This is convemently expressed m 
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differential form, by considering an lnfimteslmal scale t ransformation and retaining only first order It 1s helpful to set 

l 

e' ) = oxp( f d, l--/,, I 
" v ( l  ) f " 

tl 

and to denote the " running parameters"  (4 44) by D(l) ,  gr L(l) 
In the short-range case (a > d) ,  the results read 

d ( l n D ) / d l  = - 2 + v  ~( l )+g 1 gL--2gT& , 

d ( g v ) / d l = e g  ~ g T ( 2 g s - - g i ) - - g T g C ( g L - - 3 g ~ ) ,  

d ( g , ) / d l = e g  I g~gL +gTg t (gv  +gL)"  

w h e r e e = 2 - d  
For long-range correlations a < d, one obtains at one loop 

d ( l n D ) / d l =  2 + v  ~ ( l ) + g ~ - g ~ / ( d - 1 ) ,  

d( gi ) /d l  = eg v - 2g~ , 

d (& ) /d l  = egc - 2gvg l , 

with e = 2 - a  m this case 

(4 45) 

(4 46) 

4.3 2 The anomalous diffusion behavtour: e-expansion and exact results *) 
The RG equations (4.45) and (4.46) behave in a drastically different way in the &fferent regions of 

the (d, a) plane of fig 4 4" 
(i) When e < 0, namely for d > 2 in the short-range case (a > d) and for a > 2 in the long-range case 

(a < d), the Gausslan fixed point g~- - gc - 0 is stable, and gT c(l) converge exponentially fast to zero 
when 1--+ 0. The function v(1) is determined by the requirement that a fixed point is reached and thus 
that dlnD/dlnl-+O at large l, thus v(l)--+2 for l--+~ and a ( b ) - b  2, which is the Brownlan result 
(v = 1/2) Diffusion is thus predicted to be normal in this region, as expected 

(it) When e > 0, namely when d < 2 in the short-range case and a < 2 in the long-range case, the 
flow in the (gx, gL) plane corresponding to eqs (4 45) and (4 46) is depicted m figs 4 8a and 4.8b, 
respectively Non-trivial fixed points appear (even a hne of fixed points m the long-range caseV) The 
corresponding anomalous diffusion behaviour ts obtained (in general, as an e-expansion) from the 
behaviour of the function v(1), which is determined by the same requirement as above If v ( l )~  v for 
1 ~ ,  one has a(b )~e  ~ b 1/~ and hence v is the diffusion exponent 

(m) For e = 0 (d = 2 If a > d, a -- 2 If a < d, corresponding to the boundary of the domain in fig 
44) ,  the Gaussmn fixed point is only marginally stable, gT(l) and gL(l) again approach zero as l ~  ~, 
but more slowly than in case (1) (as a power law). As a result, logarithmic modifications of the 
Brownlan diffusion behavlour are found 

We now describe the types of dlffusmn behavlour, which for convenience are summarised in table 
4 2  

4 3 2 1 "Genertc" models o c # 0, o v # 0 The behavlour of a generic situation is most different in 
the short-range and in the long-range correlated case. For short-range correlations, the unique fixed 

*~It is clear that the diffusion exponent v as calculated from (4 41) characterizes the width of the average diffusion front (P(x, t)) In the 
following, x2(t) = t 2~ is understood in this sense 
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gL 9L i 

c+2c ~ 

(a) (b) 

i~ - _~_ -~,+2Ez 9T C, C__ 9T 2 2 
Fig 4 8 Renormahzatlon group f lows in the (gx, gL) plane (a) m the case of short-range correlations (a > d), (b) in the case of long-range 
correlations (a < d) Note that there appears a line of fixed points, which is s h o w n  as a sohd line to order e and as a dotted line to order e 2 

point (I) * -  *=  gT -- gL e + 2e 2 + • " is reached starting from (gT, gL) wlth gT and  gL non-zero At large 
scales, the possible correlations between each component of the random force at a given point are thus 
washed out. Corrections to normal diffusion only come in at two-loop order and are universal Using 
(4.45), they are found to be [Luc83, 84, 86, Fis84]: 

[X 2 ( l ) ~ t l - * 2 +  "'" , d < 2 ,  (4.47) 

SR. x 2 ( t ) ~ 2 D o t ( l + 4 / l n t ) ,  d = 2 .  

This picture is drastically modified in the long-range case There, a hne of fixed point arises 
[Bou87b(E), Hon88a] This can be shown to hold to all orders in the perturbative expansion [Hon88a] 
(the one-loop equations of the hne g~. = e/2 being of course modified) *). As a result, the anomalous 
diffusion exponent is not  umversal:  it continuously depends on the ratio p = OrL/O" T measunng the 

Table 4 2 
Behavlour of x2(t) 

Short range, a > d, e = 2 - d Long range, a < d, e = 2 - a 

d = 2  d < 2  a = 2  a < 2  

"Generic" 2D0t(1 + 4/In t) t 1-:÷ t( ivT~t)(d-l-p)/(d-~ P # pea) t ~ ( e l 4 ) ( d - l - p ) / ( d - 1 )  P ~ Pc 
( 4 - d  1 ) tx ~2(,_d)/S(d_~)p 

((rE" O'T) 2Dot 1 4 2(d - 1) i -~  ' p = Pc , = P~ 

Incompre sslble t l ~  l 4 :( 2 + d ) t l ~  t 4 , ( 2 + a 

dlv F = 0 (~r L = O) 
Potential t2~, 1 _-- 1 + tr~L 1 C d ~vv = 1 + 2d ~ + (In t) 4''2 °) F = - V U  (it, r = 0) 8 ~ D 2  ° (In t) 4:(2 -d) 12v, O'L 

a) 
p c = d - l +  

*) This results from the fact that the 1PI function F,,~** m the field-theoretmal representation of section 2 2 4 does not diverge in the long-range 

case As a result ~o- x = ~o- L to all orders and thus the relation gXflL + gL/$r = 0 holds between/3-functions 
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"compresslblhty" of the medium One obtains 

e d - l - p  
LR xZ(t)-- t2v ' 2v = 1 4 d -  1 

x2(t)  - t(ln t) (d i-p)/(Zd-2), 

"1"- O(82), a < 2 ,  

a = 2  
(4 48) 

This corresponds to hyperdlffuslon for p < Pc and hypodiffuslon for p > Pc, where Pc is a critical value 
equal to Pc -- d -  1 at one-loop order 

Exactly at p = Pc, a two-loop analysis is required and yields [Hon88a] 

= [ 2 t ' = l - e E ( i - d ) / 8 ( d - 1 ) 4 - d  1+) , a < 2 ,  (4.49) 

P Pc xZ( t ) -2Dot  1 + ~  l n t  ' a = 2  

The relevance of these results to turbulent diffusion (section 4 1 2.1) is intriguing Despite the manifest 
overslmphclty of the model, could some continuous dependence on compressibility be observed for pair 
diffusion in compressible turbulent flows '~ 

Remark All the results quoted above are e-expansions such that 
- in the short-range case, e = 2 - d and a is kept constant, a > d, 
- m the long-range case, e = 2 - a and d is fixed to a value d > 2 
In the nelghbourhood of the point a = d = 2, a simultaneous expansion m both parameters 2 - d and 2 - a must be performed, and 
the precise location of the boundaries of "short-range" and "long-range" universality classes must be determined This analysis 
has been performed at one-loop order in [Gev87, Hon88a], in the intermediate region, a third "mixed" universality class is found 
(whose boundaries are depicted in fig 4 4) In this region, different fixed points appear and it turns out furthermore that the 
diffusion laws can be modulated by oscillatory amplitudes [Gev87] As expected, the diffusion exponents are found to vary in a 
continuous way from one region to another (on this point, see also [Hon88b]) 

4 3 2 2 Incompresstble models, exact diffusion behavtour. The diffusion behavlour of incompress- 
ible models, o- L = 0, is associated with the fixed point (II): g~ = 0, g~. ~ 0 In figs 4 8a, b However, 
remarkably enough, an all-order analysis can be performed for these models, allowing one to obtain the 
exact diffusion behavlour for arbitrary values of a and d (not necessarily close to 2). This was first 
realized by Forster, Nelson and Stephen [For77] in a different context and reanalyzed recently 
[Hon88a] It stems from the fact that, due to symmetry properties [Hon88a], the RG equations (4.45), 
(4 46) involve only one independent function, 

d In D/dl = - 2  + u- l ( / )  + ~o(gw), dgw/dl = gr[e - 2q~(gr) ] . (4 50) 

~0(gT) IS not known to all orders, but, from (4.50), ItS value at the non-tnvlal fixed point (If any) has to 
be q~(g~) = e/2 and the diffusion exponent reads 

~ 4 / ( 2 + d ) ,  l < d < 2  (SR) ,  
u = ( Z - e / 2 ) - 1 = [ 4 / ( Z + a ) ,  a < 2  (LR) (451) 

The self-consistent ("Flory-type")  approximation devised in section 4.2.1 is thus exact for incompress- 
ible models (In one dimension, where the constraint dlv F = 0 implies a constant F, the non-trivial 
fixed point presumably no longer exists ) The implications of (4.51) for turbulent diffusion have been 
emphasized in section 4 1.2.1) 
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4 3.2.3. Potential case" strong disorder f ixed point  and loganthmtc dtffuston. For potential models 
(F = -grad  U, o- x = 0), it lS seen from (4.45) and (4.46) that no corrections to the RG function dgL/dl  
arise up to two-loop order. This is indeed not fortuitous, and it has first been shown in [Bou87b] that it 
holds true to all orders of perturbatton theory for both short-range and long-range correlations (see also 
the arguments of [Kra86b], and the recent detailed proof given in [Hon89a]) Thus dgL/dl  = eg L, and 

gL(l) = gOLb~ = gO e~,. 

In the marginal situations (d = 2 for short-range, a = 2 for long-range), gL(l) thus remains equal to its 
bare value gO _- ~LDo2Cd(1 _ d- l ) ,  and this results in a non-universal diffusion exponent continuously 
depending on the strength of disorder, 

1 1 O'L 
- - - - -  d = 2  (SR)  

2v l+8 , r r  D2o' 

1 c d tr L 
. . . .  + . . .  a = 2  (LR).  
2~, 1 + 2d D20 ' 

(4.52) 

(In [Bou87b(E)]. tt was suggested that these expressions could well have no corrections at higher orders 
in O'L; this has indeed very recently been proven to hold in the SR case; see [Hon89b]. For the LR case, 
see [Der90].) 

Remark The  physical ongm of this dependence of the ddfuslon exponents on the strength of disorder is the logarithmic 
increase of the typical potenual barrier with distance (see also [Tos89]), 

AU(x) ~ ~/cr~ In x (4 53) 

This raises the question why the results (4 52) (which are denved from a RG analysis of the dtsorder-averaged quantity (P(x, t ) ) )  
do not agree with a nawe Arrhenlus argument Indeed, (4 53) suggests that the typical diffusion Ume over a distance x is of order 

t -  x 2 exp(~/~ L In x) (4 54) 

(a trial frequency of order x 2, corresponding to free diffusion, has been mcluded) This argument suggests the following typical 
diffusion behavlour' 

x2(t) ~ V~t t -¢V~/l" '  , (4 55) 

which xs not a pure power law (though it does depend continuously on trL) In a restricted Ume mterval (4 55) looks hke an 
effectwe power law 

t 1/2-cv-~ (4 56) 

When disorder is relevant (that is, for d < 2 in the short-range case and for a < 2 in the long-range 
case), gL(l) IS driven to mfimty, and one should know the large-/behaviour of the RG functton dgL/dl 
to conclude. However, since an infinite disorder fixed point controls the physics at large scale, it is most 
likely that the activation argument leading to Sinai's behavlour in the one-dimensional case (section 
3.3.2) still apphes This suggests that logartthmtc dtffusion generahzmg Sinai's finding does exist m 
arbttrary dtmenston, provided the typical potential barrier increases with distance, 

x2(t) ~ (In t) 4/(2-d) , d < 2  (SR), 

(4.57) 
x2( t ) -  (In t )  4/(2-a)  , a < 2 (LR).  
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The last result has Indeed been proven rigorously to hold for a closely related hopping model on a 
lattice, by Durrett [Dur86] 

Numerical simulations of potential models have recently been performed by PettIni [Pet89, Bou89h] 
in d = 2 for different values of a Preliminary results are displayed In fig 4.9. They indeed provide 
evidence that diffusion is normal for a > 2, slower than any power law for a < 2 and depends 
continuously on o- L (becoming slower when cL increases) for a = 2 No quantitative fit of the diffusion 
behaviour has yet been made for these results 

4 3.3 The effect of a small btas F o 
In the presence of an average bias F 0, one expects that in general long-range time correlation can no 

longer be induced and that an asymptotic velocity V will characterize the large-time behavIour of the 
mean position How V depends on F 0 is the question one wants to answer. This can be studied using the 
weak-disorder expansion techniques introduced in section 4 2 2. A one-loop calculation of the 
self-energy (4 23) yields the correction to V at first order in G T L, 

Z(')(k) = k. cj ddq qGL(q 2) + O(k2) 
(27r) d D o q ~ o -  q + E (4 58) 

I 

2 DIMENSIONS 

4~n{k-'2~'-)) = r (~ . t )  
i I [ I I I 

-2 

-4 

-6 

-4 

/]1 

• v t  75 ~ t  58 

-2 0 2 -6 -4 -2 0 

Fig 4 9 Numerical simulations performed by Pettml (unpublished) [Pet89, Bou89h] on the potentml model in two dimensions exhibiting power law 
correlations These results are in quahtatlve agreement with the predicted behavlour (4 52)-(4 57) Note m particular the dependence of v on o- for 
a = 2  
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For d > 2 in the short-range case, and a > 2 in the long-range one, this correction does not display any 
large-&stance singularity when F 0 goes to zero, and one can safely expand to find the hnear response m 

Fo, 

1 GL (q2) ) 
v= Fo(l _ Zb_ o f ddq 

(2¢r) d 7 "" 

As is clear from expression (4.24) of the diffusion constant to the same order, this expression does not 
m general satisfy the Einstein relation, V= [D(F 0 = 0)/Do]F o, except in the potential case G T = 0 (this 
is connected with the existence of a stationary state without steady-state current, see chapter 5). 

When disorder becomes relevant, (4 58) behaves as a non-linear power of F 0 for small F 0, slgnalhng 
failure of hnear response theory; indeed, it has been emphasized in section 4 2.2.3 that the limit F 0 ~  0 
IS also a critical limit Here again, RG methods have to be used [Luc83, Bou87b] to find the 
dependence of V on F 0 Along lines very similar to the above, one finds that linear response is violated 
only be logarithmic factors m marginal cases, and that for d < 2 (SR) and a < 2 (LR), a non-hnear 
behaviour characterized by a new critical exponent ¢ is found, 

V -  F~. (4.59) 

As above, ~o can be expanded in powers of e = 2 - d (SR) or 2 - a (LR); the results are &splayed in 
table 4 3. Incompressible and potential models again turn out to be special cases. In the former case, no 
correction to the velocity of the pure model (and thus to linear response) Is found at any order. V-- F 0 
(this follows from the fact that the steady-state current is simply proportional to F(x) since P -- constant 
is the steady state m the case dw F = 0, see section 2.1.4) For potential models, a non-universal law is 
found in the marginal cases, while for d < 2 (SR) or a < 2 (LR), perturbative calculations do not allow a 
conclusion. Thus, the nature of the response to an external bias for potential models remains an open 
problem: it could well be that a zero-velocity phase (for F 0 below a threshold F0c ) does exist, as in one 
dimension (Let us remark that the correct one-dimensional behaviour does show up in (4.58) [Luc83] ) 

In the presence of F 0, the weak-disorder expansion of the diffusion constant involves the integral 

f Gv'L(q2) (4.60) 
ddq Doq 2 +IF o. q+ E ' 

Table  4 3 

Response V[F0] 

Short  range,  a > d, e = 2 - d Long  range,  a < d, e = 2 - a 

d=2 d < 2  a = 2  a < 2  

" G e n e r i c "  Fo/ln(1/ Fo) 

(~L, ~T) 
Incompressible  V = F o 
dlv F = 0 (o" L = O) 

Potential  

F = - V U  (a~ = O) 

F~ +" 

V=Fo 

FoOnl/Fo)-pl2ta 1~, p #  & 

V=Fo 

l+pe/2(d-1) 
Fo , P ~ P c  

V=Fo 
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in which the hmit E-~  0 should be taken before the small-F 0 behavlour is studied It is easily seen that. 
- i n  the SR case a finite "dispersion" constant is found for any dimension d >  1, with a non-linear 
dependence on F 0 for 1 < d < 2, 

D ~ -oJt?(1/v-2)~ ~ v l / v - 2 " ,  (4.61) 

- in the LR case, a finite D is found only for a > 1 (with again D ~ p(1/v-2)~, for 1 < a < 2, for a < 1, the L 0 

E ~  0 limit gives rise to a divergence in (4.60) even at finite F0, signalling an anomalous dtsperston 
regime, first analyzed in [Koc89] (see also [G14, Dou89a]) for Incompressible models, for which one can 
show that 

A X  ~ t l - a / 2  (4.62) 

This is also discussed in section 5.7. In the general case, a RG expansion of v in powers of 1 - a could 
be performed. 

Thus we see that a variety of responses to a small bias can be observed in a disordered medium. 
- l inear  response obeying the Einstein relation, 
- l in ear  response violating the Einstein relation, 
- violation of linear response: V -  F~, 
-anomalous  drift behaviour" ~ - t "  
Chapter 5 IS devoted to an analysis of such problems in a more general framework. 

5. Response to a bias, dispersion effects 

We would like to discuss, in this chapter, how an external bias may perturb the diffusing particle. 
This situation has already been encountered in chapter 3 and section 4 3.3; we intend to give here a 
wider overview of the effect of a bias and of the resulting evolution laws. We first discuss the general 
features of the response to a weak bias in disordered media (section 5.1-5 4), and then turn to 
disperston effects (5.6) Strong btas situations are considered in section 5 5. 

5 1. The effect of  a weak btas on a normal dtffuston process" hnear response and the vahdtty of  
Emstem' s relation 

5.1 1. The case of  a homogeneous medtum 
Consider first an unbiased random walker in a homogeneous medium, that we take for simplicity to 

be a one-dimensional lattice *) If one imposes a weak external force F 0, the hopping rates will read 

Wn,n  + 1 = W 0 e aFo/ 2k T = W,__ , Wn + l n = W o e +aF°/z~r = W ~  (5 1) 

From the general relations (3.23), one directly obtains £ = Vt with 

V= a(W_. - W~) , (5 2) 

*) One could have chosen to work with the continuous Langevm equaUon yx = F o + ~l(t), for which it is easy to prove that D = kT/y, a relation 
equwalent to (5 3) 
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or, for Fo-~O, 

V= (WoaZ/kT)Fo - DoFo/kT , (5.3) 

where D o = a2Wo is the diffusion constant when F 0 = 0. 
Thus, the response to a weak uniform external field exhibits three main features in the absence of 

disorder: 
(1) a velocity appears: the mean position increases hnearly with time; 
(ii) this velocity depends hnearly on the external force; 
(iii) the mobility m = V/F o is equal to the diffusion constant without bias divided by k T  (Einstein's 

fluctuation-dissipation relation). 
Let us emphasize that on a discrete lattice, linear response only holds as long as the external bias is 

weak The full expression for V indeed reads 

V = 2Woa sinh(aFo/2kT).  (5 4) 

5 1.2. Vali&ty o f  Emstem's relanon m a disordered medtum 
As is already clear from the results of section 3.3 and 4.3.3, disorder may ruin any of the above three 

properties However, when the unbiased diffusion process is normal, (1) and (ii) still apply in most 
cases; however, point (lil) can be in trouble, depending on the type of disorder at hand. We briefly 
summarize here the situation for models A, B and C when unbiased diffusion is normal. In some 
exceptional circumstances, propemes (i) or (ii) can also be violated even when the unbiased diffusion is 
normal; such an example will be discussed in section 5.5. 
* Type A models (symmetric random barriers) always obey Einstein's relation. In one dimension, this 
is easily proven from the general formulas (3.23) and (3 45). For the hopping rates 

W,.,+ 1 = W, e -"F°/2kr , Wn+l, n = W, e +"F°/2kr , (5.5) 

one indeed obtains (for F0---> 0 ) 

V= a2 ( 1 / W ) - I F o / k T -  DoFo/kT . (5.6) 

Note, however, that the field above which this relation is not vahd may be much smaller than kT /a  in 
disordered media [Ric89, Bou89e]. 

In higher dimensions, the same conclusion can be reached using, e.g., the method presented in 
[Der83b]' The Emstem relation holds whenever detaded balance is obeyed. (This is also true for model 
B.) 
* Type B models (random traps) also obey Einstein's relation when ( r )  is finite. This is easily proven 
following the lines of section 2.4.1. The thermal average of the component of the position parallel to 
the bias reads 

m 

R t = a(N__. - N.__), 

where N_. and N,_ are the number of jumps along the bias and against the bias, respectively. 
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N = N + N,__ is related to the time t by 

N =  t / ( r ) ,  N /N~ = e aF'/kr=l + aFo/kT,  

and thus 

R(t) = (t/ ( z )  )aZFo/kT =- (DoFo/kT)t ,  (5.7) 

where expression (2 36) of the diffusion constant has been used 
* Type C (random force) models do not obey Einstein's relation in general, except when the random 
force is constrained to be the gradient of a potential This is the conclusion reached in section 4 3 3 on 
the basis of a weak-disorder expansion This is in no way surprising, and holds true in general; only in 
the potential case does a current-free equilibrium distribution exist (i e ,  if detailed balance holds) and 
may a fluctuation-dissipation theorem be proven (see appendix E for a general proof in one dimension 
[Fe188]). General results can also be reached when the random force is dtvergenceless, in which case the 
arguments of section 4 3 2 2 based on the known (current carrying) equilibrium distribution leads to 

R(t) = (OoFo/kr)t, (5.8) 

where D O is the diffusion coefficient m the absence of  dtsorder and not the diffusion coefficient of the 
disordered problem for zero bias. 

These violations of Einstein's relation should, however, not be considered as a specific effect of 
disorder, indeed, it also holds true when a weak space dependent (but non-random) force is applied to 
a Brownian motion on a regular lattice 

5 2 Lmear response and "generahzed Emstem relatton" m the short-nme (htgh-frequency) regtme 

We show in this section that, when diffusion 1s anomalous, linear response still applies at small 
enough time and that in this regime a generalization of Einstein's relation holds These remarks also 
apply to the case where the external bias has a harmonic time dependence, In the limit of large 
frequencies. The derivation presented below applies for a fixed configuratton of disorder provided the 
modification due to the bias of the weight of a given trajectory is described by a Boltzmann weight, 

P0({r,},=t . t ) ~  Po({r,},=l. ,) exp r,. Fo/2kT (5 9) 
\ t = l  

(In particular, temperature must be well defined and constant in space.) In addition, the local force 
(including the external field) must be weak in order to avoid non-linear effects [the expansion 
exp(-aFo/kT ) = 1 - aFo/kT must be valid to insure 21W,j = 1 + O(a 2) at each sue] 

Introducing the length scale ~F above which the potential energy gain outweighs the thermal energy 
(that is, Fo~ F = kT) ,  one must have 

t•=l rt R(t) = ~ ~v 
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Then it ~s easy to show that 

RII(t)F E{r,) RiiPo({r,} ) exp(F o .R/2kT)  Fo 
= 2(r,)Po({r,})exp(Fo.R/2kT) Fo=~°RII(t)~ 2kT 

(5 10) 

[assuming R(t)o = 0], where RII denotes the component of R along F 0. 
This generalization of Einstein's relation to anomalous dlffUston Is generally valid only for short 

ttmes, in a regime where the mean displacement R(t)F is very small compared to the typical 

displacement [RZ(t)0] 1/2 (see fig. 5 1) (More generally, one should be careful that the two hmlts F 
small and t small can be non-commuting m some situations; (5 10) then applies provided the short-time 
regime is taken first, see section 5.4.) 

A direct apphcatlon of the result (5.10) concerns the respo__nse of a particle to an external field 

oscdlatmg at frequency to. If the field F 0 is such that ~2 >> R20(t = w- l )  then the displacement will 

oscillate with an amplitude A(to) given by 2kTA(to) = FoR20(to-1). The frequency dependent mobility 
m(to) will thus scale as [Sch73] 

m(w) = toA(to)/F o = to - -~o( to -1 ) /2kT  (5.11) 
D 

In particular, if free diffusion is characterized by R2o(t)~ a2(t/~'o) 2~, one will observe [Oht84, Gef83, 
G121 

2 

m ( t o )  - a 2%kT ( O ) T 0 ) I -  2v (5.12) 

in the short-time (high-frequency) regime aFo/kT ~ (tOro) ~ 

5.3. The long-ttme regime: non-hnear response, general rule and excepttons 

5.3.1. Analysts h la Pmcus 
In the long-time hmit, the perturbative r e su l t /~ -  F 0 can break down, since eventually the energy 

gain due to the field is much greater than kT. In this case, one may borrow arguments from critical 

'P(R) 

Ft 2v 

g R'- 

Ftg 5 1 Qualltatwe shape of the diffusion front for a biased walker m the short-time hmtt where the generahzed hnear response (5 5) is still vahd, 
the w~dth of the probabdlty dlstnbuuon ~s then much larger than the offset of the mean posmon 



238 J -P Bouchaud and A Georges, Anomalous dtffuston m dtsordered medta 

Fig 5 2 Pmcus's blob pscture of a walk stretched by an external 
force For length scales smaller than ~:~ = kT/F the walk is almost 
unperturbed 

V:!  
2 

J 
It- 

S0 

Fig 5 3 Velocity V versus apphed force F o m the three cases v > ½, 
~=~,~<~ 

p h e n o m e n a  and especially f rom po lymer  physics to obta in  a general  rule applying when  well-identified 
condi t ions are sa t i s fed  These  a rguments  rely on the following " b l o b "  picture  of  the walk (originally 
in t roduced  by Plncus for  po lymers  [Pin76, G16]) .  At  length scales smal ler  than ~F, the walk is 
cons idered  to be unaf fec ted  by the field, while for  length scales larger  than SCF, the field domina tes  and 
directs the walk along its direction.  ~F lS the crossover  length be tween  zero- f ie ld  b e h a v t o u r  and 
mfint te- f ie ld  b e h a v t o u r  (see fig. 5.2). 

One  may  thus write,  for  R ( t ) F  >> ~F, 

R ( t ) F  = ( t / t ¢ ) ~ F ,  (5 13) 

where  t¢ is the mean  t ime n e e d e d  for  the unpe r tu rbed  walk to cross the length ~F Thus,  if t¢ is finite, 
one  may  write (with ~c F ~ t~) 

R ( t ) e  ~ tee" J-l-1/v ~ t ( F o / k T ) ( 1 - ~ / ~  , (5.14) 

which shows that in the general case the response is non-hnear tn the field F 0, except in the case of 
normal diffusion, for which (1 - v ) / v  = 1 Only in this case are the short- and long-time behavlour of 
R(t)F identical (see fig 5 3) 

Remarks 
(1) Formula (5 14) might have been obtained by a scahng argument [G16], wntlng 

R(t)F = t2"Fof(L/t ~ ), 

with f(u)--~ 1 for u---> o% then, demanding that for strong fields R(t) should he linear In t fixes f(u) ~ u 2-1/~ for u--~0, and (5 14) 
follows 

(11) For v = ½, the argument may be made slightly more precise If SCF = (D0t~) 1/2, then (5 13) reads 

R(t) = tDo~v ~ = t DoFo/kT , 

so that one recovers Einstein's relation m = Do/kT 
(nl) Vahdtty of the law (5 14) The arguments leading to (5 14) fall under two circumstances, which are qmte often 

encountered in anomalous diffusion phenomena 
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(a) If the unbiased diffusion process is anomalous because of a broad distribution of trapping times, then for/z < 1, (5 13) 
should read 

R(t)F/~ F ~- (t/t~) ~ , (5 15) 

where t~ is the typical time needed to cross the distance ~F Response in this case will be non-linear both tn ume and m the apphed 
field, this is discussed in more detail below, In section 5 4 1 This would also be the case for Levy flights and for walks on fractals 
(see chapter 6) 

(b) The above argument Implicitly assumes that the (connected) correlations in displacements (V(0). V(x)) are negligible 
beyond ~:~ This may not be the case In highly correlated media, in the case of the stratified medium considered In section 1 3 2, it 
is easy to show that correlations are important up to scale Av = tr2/DF3o, which is much larger than ~:F Writing now X(t)r = ;tvt/te 

1 7 1:2 -I/4 3/4 with [see eq ( 0)] A~: = ~ D  te leads to the expected result X(t)F = Fot Said differently, the enhanced diffusion law 
corresponds to a scale dependent temperature T(~) defined as ~: ~ [T(~)t] ~:2, and the above arguments apply if A~ is defined as 
FoA r ~ k T( ,~ A 

5.3.2. Non-hnear response and the shape of the diffuston front 
Yet another (fruitful) way to understand (5.14) [G16] is to write the response equation (5.10), 

.f d R  R P o ( R  , t) e F°R/2kr 

R( t )F  = f d R  Po(R,  t) e F°m2kr ' (5 .16 )  

but instead of expanding the exponential, one looks for the saddle point of (5.16) (since FoR/kT will be 
large). Writing 

P o ( R , t ) ~ t - ~ d f ( R / C ) ,  

with f(u) ~ e- u8 for u ~ ~, one has to minimize a "free energy", sum of an "elastic" part, 8.- ~ - R  t , and 
v6/(8-1) 1/(8-1) an external field part FoR/2kT. This leads to R(t)F = RSadd le -  t F 0 Imposing now that 

R ( t ) / t  has  a f in i te  h m l t  fo r  t---> ~ l e a d s  to  

6 = 1 / ( 1 -  v ) ,  (5 .17 )  

and to (5.14). The meaning of the equahty (5 17) - which we have already encountered many times - is 
thus clear: the asymptotic shape of the diffusion front is connected to the response of the walk in a 
weak external field. 

5 3 3 Apphcauon to the dtstnbutwn of the magneuzatton tn a ferromagnet 
The analysis above applies to the probability distribution of the magnetization of a spin model at its critical point (see section 

1 3 4) One can conjecture that it decays asymptotically as 

P(M, L d) ~ exp[-(M/Ld')s], ~ = 1/(1 - ~,), v = (d - 2 + 7/)/2d (5 18) 

(This leads, for example, to P(M, L ) ~  e x p ( - M  16) for the two-dimensional Islng modeP) Response to an external field will 
correspond to the saddle point of 

f dM exp(-MeL-"d~ _ MH),  (5 19) 

that is, 

l~¢[saddlc~--LdH (1-~)/v 



240 J -P Bouchaud and A Georges, Anomalous dtffuston tn dlsordered medta 

This can be transformed as H -  M ~, which is the usual non-linear response law at Cntlcahty, with the usual relation 

6 = v / ( 1 -  u ) = - ( d + Z - ~ 7 ) / ( d - 2 + ~ l )  

The same argument leads to a predIctmn for the diffusion fronts on fractals, whtch we shall describe m the next chapter 
(section 6 2 3) 

5 4. Broad dtstrtbutton o f  trappmg ttmes anomalous drtft and vtolatton of  hnear response, apphcattons 
to the electrical properties of  dtsordered materials 

5 4 1 The effect o f  long trappmg ttmes 
The response of type-A models (random traps) to a weak bias is studied here, in the case where the 

distribution of trapping times is broad, 

f f (~) -  r -C'+~') ( ~ ~ )  (5 20) 

In this case, it has been shown in section 2 4.1 that the unbiased diffusion process Is anomalous, with 
(for/~ < 1) 

v = / z / 2  ( d > 2 ) ,  ~,=/~/( l+p~) ( d = l )  (5.21) 

Let us apply a weak external bias, such that aFo/kT ¢ 1 The posmon of the walker is related to the 
number of jumps N by 

R(t)F = aNaFo/kT , (5.22) 

where, as in sectmn 2.4 1, 

N N,~ 
_ A rAi,1//x- 1 

t =  ~ ,=,E L = 70~*,*~ (5.23) 

In this expression, r 0 is a microscopic time, and N~ stands for the number of different traps visited by 
the walker This number is itself affected by the bias, and its thermal average reads (for weak F0) 

N~ = (aFo/kT)N + C a mf(N a/z, N) , (5 24) 

where C a is a constant which depends on the lattice type only Again, one has to distinguish between 
the two cases d > 2 and d < 2 
- I f  d > 2, one obtains 

N~ ~ N ~ R(t)F ~ (aZFo/kT)(t/%)" (5 25) 

Thus the (thermal average of) the position indeed depends hnearly on the bias, but non-hnearly on 
ttme. The exponent characterizing this anomalous drift ~s tz, and the generahzed Einstein relation of 
section 5 2 ~s indeed satisfied even at large t~mes 

- If d = 1, one has to compare the two terms m (5 24) 
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If aFo/kT ~ CIN -1/2, I e ,  if one is interested in the weak-bias hmu for large but fixed time, one gets 

g(t)e ~ Fo t2~'/<1+~') , (5 26) 

which, as expected, satisfies the "generahzed Einstein relation", eq (5 10) 
* In the opposite limit aFo/kT >> 1, one gets instead 

R(t)v ~ F~t ~ , (5 27) 

which exhibits both a non-hnear dependence on the btas and an anomalous drtft behaviour The 
crossover between these two regimes simply reads 

(aFo/kT)(t/ro) #/~1+~) = 1. (5 28) 

5 4 2 The frequency dependent conducttvlty of Hollandtte 
"Hollandlte" (K 154Mgo 77Ti723016)  IS a one-dimensional ionic conductor (the charge carrier Is K +) 

As such, it is very sensitive to defects and impurities along the chain, which can be modelled as energy 
bamers to be crossed by the ion The model proposed by Bernasconi, Beyeler, Strassler and Alexander 
(BBSA) [Ber79] is a one-dimensional symmetrtc hopping model, with local hopping rates 

Wo .+1 = W.+I,. = Wo e-a"/kr (5 29) 

The "lattice spacing" In this case is the typical distance between impurities a, and W o = Do/a 2, where 
D o is the "bare" diffusion constant. BBSA propose an exponential distribution for local barrier heights 
(T m is a characteristic temperature), 

/ e  -a/k/'m , A 2 ~ A ~ A 1 , (5.30) 
~b(A) = [ 0, If not ,  

which induces a hopping rate distribution ~b(W)= W ~'-1 with 

= T I T  m . (5 31) 

As has been argued in chapter 2, this model is similar at long times to a trapping model with a local 
trapping time distribution ~O(r) ~ W0(W0~') -1-~'. The diffusion law in zero electric field is 

R2(t)o = a2(Wot)2./Cl+~'). (5.32) 

When an external a.c field F 0 of frequency to IS switched on, the dependence of the mobihty m(to) of 
the ion of frequency can be deduced from the above results, by replacing t -1 by lto in the above 
formulas. The resulting regimes are shown in fig. 5 4. 

Remarks 
* The "phase shift" between current and voltage may be obtained using Kramers-Kronlg relanons [MIt89] - or more loosely by 
replacing 1/t by lW m the above expressions Its value is shown in fig 5 4 
* If the applied field is not small, the behavlour of the position reads 
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- m  the short-time limit 

R(t)F = a slnh(aFo/kT ) (Wot) 2~ , (5 33) 

- m  the long-time hm~t 

R(t)~ = a smh(aFo/k T ) [tanh(aFo/k T)] ~-~( Wot) ~ 

The corresponomg (non-monotomc) behavlour of the mobdlty versus the apphed field for a given frequency is shown in fig 5 5 

1 'o-~-" m ((~),,, ca 
kT A~:(I-F) ~- F~a _ f ~  

/ m (~a)-,,ca I-2v 

/ . ~ J  A~ =(1-2v).~_ 

(Do 

Fig 5 4 Frequency dependent mobihty m(to) and phase A@ (be- 
tween current and field) m the (to, F) plane exhibiting a non-trivial 
crossover line between two different laws for d < 2 

~.~ ~1-2v shx 

I 
I 
I 

X C o  

Fig 5 5 Dependence of the mobdlty m(~o) for a given frequency on 
the dimensionless variable aF/kT according to (5 33) 
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Fig 5 6 Experimental data for IOnlC conductors [Ber79, Bey81] (a) 
conductlv]ty (mobility) versus frequency, showing a power law depen- 
dence, filled symbols Re o-, open symbols -Imo-,  (b), (c) the 
dependence of the exponent on temperature, and the fit (5 26) 
proposed by [Ber79] Note, however, that a purely linear dependence 
on temperature, as (5 27) would predict, is not a priori excluded 
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The complex moblhty m(to) has been measured for Hollandite [Ber79, Bey81] and follows quite 
accurately a power law, 

m(co) = (ltO)", (5.34) 

with the required [Mit89] phase shift between its imaginary and real components (A$ = 17ra) The 
authors of [Ber79] implicitly assume that the applied field F 0 is sufficiently small so that the 
experimental results may be analyzed within linear response theory, eq. (5.26) The exponent a IS thus 
identified with (1 - /~ ) / (1  +/z),  that is, (T m - T)/(T m + T) The agreement with experiments at 
different temperatures is quite good (fig. 5 6) It would, however, be satisfactory to exhibit the 
crossover towards the non-hnear regime by increasing the applied field, and to see the exponent a 
change from (1 - /x ) / (1  +/z)  to 1 - / x  (1 e., 1 - T/Tm) In particular, a straight line going through the 
experimental points of [BerT9, Bey81] IS not a priori ruled out (fig 5 6), which underhnes the need for 
more data. The existence of a crossover would furthermore validate the one-dimensional nature of the 
problem. 

5.4 3 Photoconducttvtty of amorphous matenals 
Biased CTRWs with a broad distribution of trapping times have been used to explain anomalous 

electrical transport In some amorphous insulating materials (e.g. As2Se3) (see [Sch75, Pfi78] and 
references therein). Figure 5.7a shows a typical experimental set-up in which the transient current I(t) 
through the sample IS measured. The observed behaviour (fig 5 7b) is very different from the one 
expected if diffusion followed a biased Gaussian process. Indeed, I(t) is well described by 

I ( t )  ~ t - " l ,  t <~ ~'(L) ; I ( t )  ~ t - ~ 2 ,  t >>. ~ ' ( L ) ,  

where the sum of the exponents turns out to be close to - 2  This is well accounted for if the charge 
carriers are assumed to perform a biased CTRW with a broad waiting time distribution, ~b(r) = ~.-(1+~,). 
The first regime corresponds to the motion of the centre of the packet x(t)/t ~ t ~ - 1  For longer times 
Ix(t) larger than the sample size], the current is due to the particles which have been trapped for a very 
long time, and thus decreases as the first passage time distribution, i.e., t -(1+~) Note that the sum of 

1 1 ~ ' -A$2 5e3 lOOum, 36jura 
L, ght flash - - I  L k,-- ~ . ~ = I E - - - 0 . 5 5  296K 

sample 2 0 "'J" " ~ ' ~ "  
semi-transparent ~ "  " ' "  • ~-- 

electrode ~ ' SLOPE:-145 

(a) ____L_ --=- _l,(b) . . . . . . .  ,, , \ .... , 
-2 -1 0 ~ 1 

LOG t / t  T 
Fig 5 7 (a) Typical experimental set-up a potential drop =s apphed and a hght flash creates mobile careers (b) The reduced transient current as a 
function of time Note the &fference with the expected eft function (dot-dashed curve) if &ffuslon was normal 
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the exponents ~s exactly - 2  m th~s model, which also predicts that the crossover rime between the two 
regimes should scale as T ( L ) -  L ~/" 

5 5 Strong wolatton of  hnear response, the combined effect of  bias and geometric dtsorder 

Pamcular geometncal structures can reduce [Bar83] a highly non-hnear effect when an external field 
is apphed Consider, for example, a disorder such that V-shaped obstacles (see fig. 5.8a) or "dead" 
danghng ends (fig 5 8b) are created Assume furthermore that the sizes l of those objects are 
distributed according to a certain probability distribution p(l) It is quite obvious that the external field 
will drwe the pamcle towards the bottom of those "fJords" which will act as traps w~th release time 
t = exp(F.l /kT) (Fol is the typical energy scale reside a fjord of length l). Two cases can then be 
distinguished: 

(a) p(l) decays more slowly than exponentially with l In this case, as soon as the field is non-zero, 
the mean trappmg time diverges, leading to a creep (anomalous drift) of the pamcle, corresponding to 
zero mobility (or more precisely to a rime dependent moblhty, vamshmg as t ~ )  This is to be 
contrasted w~th the fact that for a w~de class of p(l), the dlffus~on coefficient ~s finite when the external 
field ~s zero, th~s ~s one of the exceptional s~tuat~ons alluded to in section 5 2 There can of course be 
anomalous trapping (even for F. = 0) ff p(1) is decaying sufficiently slowly, or ff fluctuatmg local fields 
F(r) remain 

(b) If p(l) decays exponentmlly, say as exp(-l / lo) ,  then a field-reduced dynamical phase transmon 
will occur for a critical value F c of the bias defined by the divergence of (~-) [Bun86] 

F = kT/1. ,  (5 35) 

This value separates a flow phase (£ = Vt) for F < F~ from an anomalous drift phase F > F c of the type 
encountered m chapter 3, 

R(t) e ~ t FJF (5 36) 

For a sample of size L, the resulting current will have the shape depicted in fig. 5.9. Note that m th~s 
case the unbmsed diffusion process ~s normal 

"p >'7 
--- 7 " 

(a) (b) 

Fig 5 8 Two schematic instances where geometry combined w~th an 
external bias reduces deep traps (a) V-shaped obstacles, (b) danghng 
dead ends or backbends 

k = ~  

o g _  - -  L. 

F c F" 
Fig 5 9 Current J versus apphed force for a sample containing, say, 
dead ends with exponennally distributed Lengths In this case, a 
"dynamical" phase trans,non occurs [Bun86, G12], which is rounded 
off for a fimte-slze sample (of length L) 
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If p(l) decays faster than exponentially, the mobility will always be finite for an infinite sample, 
although It may be a decreasing function of the applied field. 

5.6. Problems wtth an average flow: &sperston 

We now turn to situations where a finite (not necessarily weak) velocity IS imposed. Such situations 
are of great practical importance, e g. in the physics of porous media in which a packet of tracer 
particles is inJected at the entry point of the sample and one observes the dtsperston At of the exit time 
around its mean value (fig 5 10). At is related in a simple way (see below) to the longitudinal diffusion 
constant of the tracer, through 

DII =lLm ~ U 3 At212x. (5 37) 

Theoretically, one asks how the average velocity reflects the microscopic length and time scales or, said 
differently, what is the information contained in the DII versus U curve [Saf59]? A classic reference on 
this subject is the compilation of data due to Fried and Combarnous [FrI71], reproduced in fig 5 11 
Experimentally, this represents an important and useful tool to characterize the medium; quite a lot of 
work has thus been devoted to both aspects (for recent reviews see, e.g., [Koc85, Cha87a, b, Bra88b, 
Hu188, Bac89]). 

5.6.1 A toy model to understand &spersion laws 
An extremely simplified model [Bou88a] allows to discuss in an elementary way the different regimes 

to be expected in such situations. The medium is idealized as being one-dimensional (fig 5.12), and 
made of a "backbone" along which the particle is convected with velocity V At regularly spaced 
positions (separated by a distance ~), the particle can leave the backbone for a while, with probability 

P; 
- i n  one version of the model (fig 5 12a), it enters a trap, where it stays during a given time z; 

~ _ F  " ~ > L ~  

PT2  
v 

0 t L t 
I 

tl 

Fig 5 10 Typical dtspersmn experiment A concentration pulse is 
created at the entry point of a (porous) sample through which a flow is 
forced The dispersion of exlt times At Is then recorded at the other 
end of the sample Measurements at mterme&ate positions m the 
sample may also be performed, e g ,  by ultrasonic techmques, see 
[Bac87] 
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Fig 5 l l  Compdatlon of experimental results [FnT1] showing the 
dependence of the &sperslon coefficient on the flow velocity U 
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T 
cc~ 13V 

1-p = ~ ~ "= V 1-p V 

Fig 5 12 Simple model of dispersion [Bou88a] The pamcle evolves on the backbone with local velooty V Every ~:, It decides either to carry its 
way through, or to enter (a) a trapping region characterized by a release time r, or (b) a region of locally slower velocity/3V 

- in another version (fig 5 12b), the traps are replaced by regions where the flow is locally slower ( i l k  
8<1) 

All molecular diffusion effects have been neglected in these models, which are only meant to capture 
the main effects of dispersion For this reason, a complete analytic solution is straightforward We 
illustrate the calculations on the trapping model, the translation to slow velocity zones being most 
simple 

The easiest quantity to compute IS the probablhty for the particle to reach x at time t, knowing It was 
at x = 0 for t = 0 (first passage time or "residence time" distribution) With the notation N = x/~, one 
has 

N 

P(t, x) ~ k k = CNP (1 --p)/V k6( t _  x / V -  kr), (5 38) 
k=0 

since no backsteps are allowed. The Laplace transform of P(t, x) thus reads 

P(E, x) = e-eX/v(1 - p + p e-e') N (5 39) 

Expansion for small E shows that for large t and x, P(t, x) takes the following Gausslan shape: 

1 exp/~ ( t - { )2  
2-~,x ) '  (5 40) P(t, X) 

where the average and variance of the first passage time at x read 

{= x + P , ~, = )5 _ {2 = x ~- p(1 - p) (5.41) 

Since backsteps are forbidden (no molecular diffusion), the probabihty density P(x, t) of finding the 
particle at x at time t is related to P(t, x) by a "conservation" equation, 

i P(x, t) dx = f P(t,x) dt. 
x 0 

(5 42) 

It follows from this equation that P(x, t) also takes a Gausslan asymptotic form, 

[ { x -  Ut~ 2] 
P(x, t) = (4~-Drlt) -1/2 e x p [ -  ~ 2 V ~  ] -  ] ,  (5 43) 
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where the velooty U and longitudinal diffusion constant Dfl read 

U -1 = V - '  + p r /~ ,  D, = ½p(1 - p)U3z2/~. (5.44) 

The analogous expressions for the model with low-velocity bypasses (fig. 5.12b) follow Immediately by 
replacing r by (UV)(a / /3  - 1) and s c by 2~ in these expressions, 

U -1 = V-~[1 + ½p(a//3 - 1)], DII = lp(1 -p) (a / /3  - 1)2(U/V)2U¢. (5.45) 

A commonly used parameter m the physics of porous media is the fraction f of the total volume 
corresponding to traps (or to slow-velocity bypasses). Assuming the process to be ergodic due to the 
underlying molecular diffusion, f should be equal to the fraction of ume spent in the traps As a 
function of the above parameters, f thus reads 

for model (a). f = p z U / ~ ,  (5.46) 

for model (b): f =  ½p(a//3)U/V.  (5.47) 

Using f as a parameter, the above expressions for the diffusion constant can be cast into the form 

(a) Oil = lfU2r(1 - f ~ / U r ) ,  (5 48) 

(b) DII = l fU~(a//3)(1 -/3/a)2[1 - f ( 1  +/3/00]. (5.49) 

Note that molecular diffusion has been neglected, which is vahd provided: 

Pe--V~/D o,>1 or DII>>D o (5.50) 

These expressions have an important physical content" 
- I f  trapping regions play the dominant role, with a well-defined release time (due to molecular 

2 diffusion, i . e ,  z = a/Dm) , then DII scales like U2r for sufficiently large velocities; this is the case, for 
example, m chromatographic or filtration processes. This mechanism also plays some role in porous 
media at intermediate velocities [Mag89]. 
- If, on the contrary, the velocity nowhere vanishes but low-flow regions dominate (/3 ~ 1), then Oii is 
hnear In the velocity, 

DII = Ul d (5.51) 

This IS the law observed in almost all porous media at large velocities (cf fig 5.11); as this toy model 
clearly emphasizes, it simply follows from the lnhomogeneities of the velocity field in the medium 
("geometric dispersion"). As is also clear from (5.51), in the presence of very low velocity channels, 
the dispersion length l a = DII/U can be much larger than any "microscopic" leffgth (e g. pore size), and 
even than the correlation length of the velocity field, since, for small/3, 

l a -~f(1 - f ) a ~ / 2 / 3  >> (5.52) 

Indeed, large values of l d are often encountered for sintered samples (see, e.g., [Cha87a,b, Bac89]). 



2 4 8  J -P Bouchaud and A Georges, Anomalous dtfJuston m disordered medta 

Remark An interesting generahzatlon of the above trapping model IS when the trapping times are 
not all equal, but have some distribution q,(r) At each visit of a trap, a value r is chosen according to 
that distribution (one has thus a biased CTRW in the sense of section 1 2) The above calculations are 
easily generalized to that case, since P(t; x) reads 

" f f  P(t,x) ~ ~ k p)N-~ = CNP (1 - "" IF[ dr, tt/(z,)6(t - x / V -  E,: 1 
A=O l 

• ,), (5 53) 

and thus, in Laplace transform, 

P(E, x) = e e'/v[1 - p + pt~(E)]' '~ (5 54) 

Expressions (5 44) are generalized as follows 

U - ' = V - '  + p ( r ) / ( ,  D ) p = ( p U ~ / 2 ( ) ( ( r Z ) - p ( r )  :) (5 55) 

In particular, for small p and as a function of the fraction f, 

DII = ½ f U 2 ( r 2 ) / ( r ) .  (5 56) 

It is Important to notice that it is the rano ( r  2 ) / ( r )  which fixes the time scale 

5 6 2 Anomalous &sperston 
5 6.2.1 Trappmg. If the second moment of the trapping time distribution diverges, it 1s apparent 

from (5 55) that Ax2(t) grows faster than linearly with time It IS easy to see that if ~ ( 7 )  - -  "r - O + ~ )  with 
l </x < 2 (this case was already encountered in chapter 3), then 

x:(t)  - x ( t )  2 = t =~  

In this case the diffusion front never becomes Gausslan (it is rather a Levy law of index/x), and the 
apparent Dii shows a strong dependence on the size of the sample, 

DII(L) = L 2'" ' (5 57) 

5 6.2.2. Long-range correlanons of the velocuy field. Anomalous dispersion can also arise if the 
velocity field is strongly correlated [Koc88, 89, G14], 1 e , if 

( v ( 0 ) .  V ( r )  ) - v :  --- r ° (5 58) 

As the mean velocity U of the particle is assumed to be non-zero, the dominant part in the time 
correlation of the velocity is obviously 

( v ( o ) .  v ( t ) )  ~ ( u t )  - °  , (5 59) 

from which the typical displacement Ax around Ut follows, again using the methods of chapter 1 (see, 
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however, [Dou89a]), 

f t l-a/2 a < 1 
A x ( t ) - ] t l n t ,  a = l ,  

Lv~ ,  a > l ,  

(5 60) 

resulting in a scale dependent dispersion coefficient, 

DI I (L) -  L ~-" " (5.61) 

In this case, the diffusion front exhibits two maxima [Koc88, 89] This "scale effect" 1s experimentally 
known in hydrogeology and oil recovery, but apparently the mechanism responsible for it (trapping or 
correlations) has not been identified. Analysis of the diffusion fronts, which are very different in the two 
cases, should provide useful information 

6. Anomalous  diffusion on fractal structures and related transport properties 

Anomalous diffusion can also arise from the very geometrical structure of the "substrate" on which 
the particle is evolving: "culs-de-sac" and loops do slow down diffusion. If they are present at all length 
scales, they may eventually change the diffusion exponent u. This is what happens on fractals and has 
been extensively studied since De Gennes' paper on "ants in labyrinths" [dGe76] A comprehensive 
review on this subject by Havlin and Ben Avraham [G12] has recently been published and we refer the 
reader to this work for some information and references (see also [JSP84]). For the sake of 
completeness, we nevertheless summarize some fundamental aspects of "fractology" and give a few 
examples and open problems. 

6.1. Fractals : three charactertsttc dimensions 

A fractal is characterized by several different dimensions, related to different physical properties Let 
us quote three of them. 

(a) The fractal (or mass) dimension relates the mass contained in a sphere to its size e ,  

M, - e dF . (6.1)  
e~O 

For an lnhomogeneous structure one should rather look at the "multifractal spectrum", associated with 
the different moments of the fluctuating mass (see, e.g., [Pal88, Fed88] for a review), 

( M ~ ( r )  ) 1,q ~ edq . (6.2) 

d v IS not an intrinsic [Van84] property of the fractal but rather describes how the object is embedded in 
the outer space For example, a straight line has a "fractal" dimension d E = 1, but if it is folded so as to 
give, e.g., a s e l f - a v o i d i n g  walk in two dimensions It  becomes a fractal object of dimension d E = 4/3 (see, 
however, [Kou89]). 

(b) The spectral dimenston [Ale82, Ram83] can be defined, for example, through the mean volume 
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occupied by a diffusing dye droplet initially concentrated on a given site After a long time t, this 
volume grows by definition as 

Vs(t) - tds/2 (6 3) 

This volume is clearly lnvariant under a fractal deformation, d s is an mtrmstc property o f  the fractal For 
the example considered above Vs(t ) - t 1/2 and thus d s = 1 whatever the overall shape of the line on 
which the particle diffuses. 

Alternatively, one could consider the probability of presence at the initial site after a time t; this will 
decay as 

P(O, t ) ~ v ; l ~ t  -ds/2 (6 4) 

As was set out in detail in chapter 2, P(0, t) is the Laplace transform of the density of states of the 
Laplacian operator on the structure The low-energy density of states thus behaves as 

z r - \  rds/2-1 
PtC,)~otZ (6 5) 

The typical distance R(t) travelled by the particle in a time t is obtained as 

Vs(t ) ~ R(t) dF ~ R(t) ~ t ds/zdF . (6 6) 

One may thus define an effective, scale dependent diffusion constant, 

D(~:) = ~ 2 - 1 / ~ ,  v=_ds/2d F (6 7) 

The probabihty distribution P(R,  t) is expected to obey a CLT at long time, 

P(R,  t) = [Vs(t)l-~f(R/t~) . (6 8) 

The asymptotic behaviour of f(x) for large x is, as usual, 

f(x) x'S x ~ e (6 9) 

The value of 6 is discussed below (section 6.3.1) 
Note that the problem of a random walker (for which the weight of one walk is determined step after 

step) on a fractal does not define the same statistical measure as the "ideal polymer" problem [Mar89] 
(for which the weight is determined globally [G16]) This remark also holds in Euclidean space for a 
walk In a potential V(R) ( ~ E .  R). 

(c) The spreading (or chemtcal) dtmenston (see, e.g., [JSP84, Sta84]) is related to the total volume 
accessible to t steps (fully "stretched") walks, 

V ~  t 3 (6.10) 

is an intrinsic property of the structure (d = 1 for the straight line). The maximal distance (in the 
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embedding space) Rmax(t ) travelled by the walker is thus given by 

[Rmax(t)] dF = (," ~ R m a x ( t ) -  ta/aF (6.11) 

Obviously, this means that d - d F ,  whatever the structure. The "tortuoslty" of the fractal thus 
considerably slows down the walker, who, although walking "straight" in his own space, appears half 
drunk from the outside! The same argument also leads to the mmtmal time required to cross a given 
distance R, 

/m,n ~ RaF/a" (6.12) 

(d) Bounds. We have already mentioned the obvious inequality t t -  d F. One can also show that ^ 
d s -< d, which can be understood as follows: Consider two points A, B separated by a distance R; isolate 
the minimal path hnking those two points along the fractal (this path is R dffa long) and delete all links 
not belonging to this shortest path. Diffusion is thus speeded up on this restricted linear structure, on 
which s(t) behaves as t 1/2 (SlS the arc length). The time tAB needed to reach B starting on A on the full 
fractal will hence be longer than s 2 = R 2dF/a. t A B  ~ R 2dF/ds then yields d s -< d. Thus 

d s ~  ~ d F (6.13) 

6.2. Diffuston-related transport properttes of fractals 

Many properties of general fractals are shared by the simple "folded chain" structure (for example, a 
random walk of N steps). If the current (or the walker, the phonon, etc.) cannot cross contact points, 
the structure is really internally one dimensional and thus d = d s = 1, while for the example of a 
random walk d E = 2. We thus illustrate three important transport properties of fractals on this 
transparent "toy" model; as we shall see, some of them are quite interesting (see in particular section 
6.2.2, which contains new results). 

6.2.1 Electrical properttes of fractals 
Combination of the general theorem on resistor network [chapter 2, eq. (2.15)] and of eq (6.7) 

allows one to argue that the d.c. conductivtty of a fractal network is scale dependent and behaves as 

~(~)_ ~2-1/v (6.14) 

The resistance ~ between two points A, B separated by a distance ~: is obtained by arguing further that 
the current distribution extends over a "volume" ~:dF made of ~ dF-1 "channels" of length ~ in parallel 
(see fig. 6.1). The resistance ~(~:) thus scales as 

~(~)--  ~/[~dF-10"(~)]-- ~l/v-dF (6.15) 

For the example of a "folded chain", v = 1/2d F and ~(~:) - ~: - s: the end to end resistance of a linear 
structure is obviously proportional to the number of links. The problem becomes far more interesting if 
one lets the current flow through (quasi-) contact points. One must then distinguish two cases: 
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Fig 6 1 The paths contributing to the conductance between two points A and B which are ~ apart he within a volume ~a, hence there are =~:d 
channels of length ---~: m parallel 

(a) The fraction f of links belonging to no loops (i.e., the number of "hot" bonds carrying all the 
input current) is fimte. In this case, only the prefactor of (6.15) changes, but the exponent remains 
equal to d v 

(b) This fraction f is equal to zero. Cross-links in this case may deeply affect the topological nature 
of the chain and thus change the spectral dimension to d s > 1 This would correspond to an enhanced 
diffusion along the structure, and an end to end resistance growing as ~ t (~ : )~S2/ds-~  S Numerical 
experiments have been performed for random walks in three [Mov88] dimensions, indeed suggesting 
ds(d = 3) = 1 14 (for the same problem in d = 2, see [Man89]) A value of d s for self-avotdmg chams in 
two and three dimensions with cross-links was proposed in [Bou87d], assuming f = 0. In this case d s was 
related to the statistics of large loops within a polymer [dCl80] Recent numerical work on SAWs 
[Sen88, Yah90, Bar90], however, seems to indicate that f is non-zero. A detailed study of the 
dtstrtbutton of f would be highly interesting: does it peak for infinite chains9 

6.2.2 Biased dtffuston on fractals: hnear and non-hnear response 
6 2 2 1 Static field. According to the general discussion of chapter 5, In the short-ttme regime (where 

R(t) <~ kT/Fo) the response of the walker is linear in the applied field (see also [Oht84], where this 
result was obtained for the percolation cluster), 

R(t)r  "=-- (Fo/k T) t  2'' (6.16) 

The crossover time is thus 

t* = (kT/Fo) t/~ (6 17) 

For longer times, the diffusion behavlour is strongly dependent on the structure and anlsotropy of the 
fractal Take any configuration of the folded chain that we consider, provided it is globally tsotroptc 
(that is, the mean value of the curve's tangent is zero, ( (0r /0s)  = 0), and assume that the external field 
is directed along z To reach a point B characterized by an abscissa ZB, the particle will typically have to 
go through points on the chain of abscissa of order - z  a. The potential barrier that the particle has to 
cross is hence of order Foz~, and this will take a time 

t -  t* exp(FozB/kT ) (6 18) 

The typical distance spanned by the particle is thus [Bar83] 

R(t) ~ z(t) ~ (kT/Fo) ln(t/t*) (6.19) 
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R Io 9 t 

Fig 6 2 Time dependence of the average position of a biased walker on an lsotroplc structure, for long times, the fact that energy bamers of height 
=FR must be crossed induces a loganthmlc progression of the walker [Rom88, 1312, Rou87a] 

(fig. 6.2) mdependen t ly  of, e g ,  the fractal &mens ion  of the structure. This result was obtained in 
[Rom88] through a somewhat more involved analysis. If the structure is a simple random walk R(s)  

characterized by 

( o R / o s )  = Vo , (OR/Os  o R / O s ' ) c  = Oo (S - s ' )  , (6.20) 

then the problem at hand is equivalent  to the one-dimensional random force model considered in 
chapter 3; indeed, one has V ( s ) =  F o • R(s )  and hence, the local force along the structure (defined as 
f ( s )  -- - OV/Os = - F o • OR / Os) has a Gaussian distribution characterized by 

( f )  = F o . V  o - FoV o cos O, ( f (s ) f (s ' ) )  c = F~D o 6(s - s ' )  (6.21) 

The walker will thus evolve according to the laws derived in chapter 3. In particular, the parameter/z is 
equal to 

2 k TFo V o cos 0 k T 
tz = 2 = Fol---~d cos 0 ,  (6 22) 

FoDo 

where I d = D o / 2 V  o is the "diffusion length" of the structure. For ~ < 1, the particle will thus evolve as 
R ( t )  ~ t ~, since s ~ t ~. Note that the stronger the field the weaker is/z, and thus the slower is the drift 
motion! 

More generally, if the fractal is such that the minimum of the potential barrier over all paths joining 
A to B grows as Fo R e  (a  <- 1), the resulting diffusion behaviour will be 

R ( t )  ~ (In t)  Im (6 23) 

The "skewness exponent" a can be less than one if the fractal is anlsotroplc and/or  if the "minimal 
paths" are sufficiently "straight" (for example, on the Sierplnsky gasket). Numerical simulations 
suggest a -  1 for percolation clusters [Hav86, G12, Bun87]. The picture developed in section 6.3.3 
indeed leads to a - 1. 
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6.2 2.2. The fimte-frequency case [Bou90]. We have learned from the above example that the 
dramatic effect of a static field on a random structure is to create high effective potential barriers, which 
considerably slow down the progression of the particle This effect is felt by the particle for times longer 
than t* If the external field osctllates at a frequency such that to -1 < t*, the trapping mechanism cannot 
operate and linear response theory is correct: the amplitude of motion in a field F(t) = F o sin(tot) is 
simply obtained as A ( w ) -  F0to -2~, for to~>> F o [Oht84] For lower frequencies (longer times) two 
lapses of time can clearly be distinguished during each period. 

A n  "actwe" phase, when the field F(t) is small, for which the law (6 16) IS valid, 

R(t)F ~ [F(t) /kTlt :" ,  

or, with F ( t ) ~  Fowt, 

R(t)F ~ ( Fo/k T)tot  ~+ 2" (624) 

This is consistent until F(t)R(t)o is of order kT,  that is, 

Fotot(11+") ~ k T (6.25) 

"A passtve" phase, in which the field becomes too strong and the particle 1s effectively trapped in 
"backbends" and essentially does not move (in fact it does progress logarithmically). This phase takes 
place for times t 1 < t < 27r/to - t 1. 

The maximal displacement is thus entirely built up during the active phase [0,/1], and therefore reads 

A ( w )  = R(t  = t~) F ~ (Fo/kT)wt{  + 2~ , 

or, using (6 25), 

A ( w )  = (kT/Foto) ~/('+~) (6.26) 

(for w ~ t *-~, which corresponds to t I "~  t*). Note that again the amphtude decreases with increasing 
field. For a given frequency, the low-field (6.16) and strong-field (6.26) regimes can be summarized by a 
scaling expression, 

A(w ,  Fo) = (Fo/kT)w-2"f (Fo/F*)  , (627) 

with 

F * = w  ~ , 

f ( x ) - - ~ o l ,  f(X) x ~  X -~ , a = ( l  + 2 v ) / ( l  + v) (6.28) 

Harder et al [Har86] have numerically investigated this problem on the two-dimensional percolation 
cluster, for which v-~0.35. They find precisely the scaling form (6.27) with F * ~  to °3, while they 
estimate a = 1.5. Our prediction for a is a = 2(d F + d s ) / ( 2 d  F + ds) = 1.26 (see fig. 6 3) This agrees 
quite well with their results. 
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Fig 6 3 Biased motion on the percolatton cluster numerical results of [Har801 for various values of the trequency, rescaled according to (6 27) 
A(to)to2"/F versus Fto-~ The asymptotic behavlour of the scahng function, as predicted by our formula (6 28), ms shown by the sohd hne 

For the "walk on a random walk" example (which should be much easier to study numerically) we 
expect 

F* = 0 )  1 / 4  (6.29) , a = 6 / 5 .  

Th~s subtle interplay between trapping and finite-frequency effects may serve as a toy model for pulsed 
electrophoresis of long molecules in gels, where anomalous effects are known to appear [Noo87]. Of 
course, the point particle studied here does not possess the internal degrees of freedom of a long 
macromolecule which are thought to play an ~mportant role in the later process [Vlo88, Deu89, and 
references thereto]. 

6.2.3. Diffusion front and localizaUon on fractals 
6.2.3.1. The shape of  the diffustonfront. The diffustonfront on a disordered fractal may be discussed 

most clearly on the random chain structure that we cherish. Indeed, P(s, t) is simply a Gaussian, 
P(s, t) ~ t -1/2 e -s2/r, and so is P(R, s). One may thus compute the average diffusion front (in real space) 
a s  

( 
( P(R, t)} = J ds P(s, t)P(R, s) , 

which, upon a saddle point approximation, yields m the regime R >> t 1/4, 

(6.30) 

( P(R, t)) ~ exp[-(R/ t l /4)  4/3] (R2t) -d/6 . (6.31) 

The exponents appearing in (6.9) are thus given here by 

1 1 , ~ =  - d / 3 .  (6.32) 
6~v- 1 -  ¼ 1 - v  

The typical diffusion front (obtained without averaging over starting points, or else as exp (In P(R, t))) ,  
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however, IS obtained as 

(ln P ( R ,  t)} = Z -~ - -  e -R2/' d s  ~- R 4 / t  (6 33) 
t 

The exponent 6tv p is now equal to 4 instead of 4/3 This shows the importance of correctly specifying 
the averaging procedure and the quantmes of physical interest in disordered systems. More generally, 
Harris and Aharony have recently shown [Har87] (see also ref [G12] and references therein) that on a 
general fractal 

(~ . . . . .  ge = 2 d F / ( 2 d v  - d s ) ,  (6.34) 

while 

6typ,c, , = 2 d v / ( 2 [ t  - ds) .  (6.35) 

(The above example is such that d v = 2, d s = d = 1.) In particular, since d -< d F, one has t~ty p ~ (~av In 
the next section we shall present a simple physical derivation of (6.34) and (6 35). Present numerical 
simulations [G12, Yak89] seem not to agree with (6 35). We suggest, however, that, in order to test the 
rellabthty of numerical mvesttgattons of very rare event effects such as (6 9), one should deal first with 
the simpler random chain structure (6 32), (6 33) 

6 3 2 2 Locahzatton of  waves The above probability distribution and the structure of a locahzed wave on the structure are 
two facets of the same problem, 1 e ,  the Laplacian on a fractal space Imagine that the elgenstate ~OE(R ) of this Laplacian for an 
energy E decays asymptotically as 

OE(R) ~ exp{-[R/A(E)]  ~ } (6 36) 

The exponents r /and ~ are related to each other by 

8=1/(7/  1 .) (6 37) 

This relation has been obtained by Levy and Soulllard [Lev87], and can be recovered as follows Using eq (3 107) one can 
express P(R. t) as 

P(R. t) ~ f p (E)  e e'~e(O)Oe(R ) dE  

Assuming that A(E) behaves as a power law for small E, and performing a saddle point integration, one obtains 

,~(E) ~ E -~ , (6 38) 

P(R,  t ) -  e x p [ - ( R / F ) " " '  "~] (6 39) 

Equation (6 39) is the announced result (6 37), and (6 38) simply expresses the fact that 

E 

N(E)  = I p(e) de ~ E ~'2 ~ 1/[A(E)] "v , 

# 

0 

I e ,  that the number of states per site is finite Combining (6 37) and (6 34), (6 35), one finds that the average behavlour of the 
wave function ~s 

(O~(R)) ~ e "'~ (6 40) 



J -P Bouchaud and A Georges, Anomalous &ffuslon m dtsordered me&a 257 

while the typzcal wave function Is "superlocahzed" (that is, decays faster than exponentially), 

I]/,yp(R) ~ exp[-(R/a) av/a] - e -s/s° , (6 41) 

which has an obvxous meaning the wave functions are exponentmlly locahzed along the structure 
Again, (6 40) and (6 41) are easy to obtain for the hnear chain structure Assume that, e g .  an attractive impurity Is placed at 

the ongm Then the bound states will decay (along the chain) as 

~0(s)- e .... 0 

Now, in real space, 

(~(R)) = ~dsP(R,s)tO(s) . 
ds P(R, s) e 

while 

S ds (s/so)P(R, s) ~ - R  2 
(ln ~0(R) ) = S ds P(R, s) 

6 2 4 Response to a constant mternal btas [Bou89b] 
Let us consider here the response of a particle diffusing on a fractal to a constant "internal field" (1 e ,  such that the potential 

energy drops as -Fos ) Generahzmg somewhat eq (6 33), one may write 

(In P(R, t)) = f ds P(R, s)(ln P(s. t)) ~ - f  ds ( s / f ) ' e (R ,  s) ,  

where ~ is the mternal &ffuslon exponent (defined by s - t") and P(R, s) reads [G12] 

e(n, s)- "f(R/?'+) 

Thls yields 

(In P(R, t) ) = - (RaV/a / f )8~ ' - (R / f )  '~p , 

o r  

dF/~ = ~t~,  

d} = (d/dF)6ty p = 2 d / ( 2 a -  ds)-= 1/(1 - k) 

This provides another denvaUon of (6 35) [Bou89b] 
insures "hnear response" to a constant "Internal field" The arguments of sectmn 5 3 lead m this case to the following equation of 
motion 

S ~ tF~ l - ~ ) / ~  tF~ ares-1 , 

o r  

(642) 

(643) 

Formula (6 43) has indeed the expected shape in internal space, which 

R(t) ~ ta/dVFo, a = (23 - ds)~l/dsd v (6 44) 

6.3. The percolatton problem: crossover from fractal to Euchdean behavtour 

6.3.1. Percolauon: a short toolgulde [StaB5] 
Let  us consider a random walker on a disordered lattice, where the hopping rates W.,.+ t = W.+t,. can 

be either 0 or W. Bond percolation assumes that this choice is independently made on each bond, and 
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D(p) 

D o-- a 2 W 

( P - P c ) ~ ~  ,. 

Pc 1 p 

l~lg 6 4 Dependence of the average &ffuszon constant D ( p )  on the concentration zn the percolatzon problem As soon as an infinite cluster is 
formed, diffusion is possible and D(p) grows as ( p -  Pc)' for p - P c  sufficiently small 

that Wn,.+ t = W Wlth probabdlty p and 0 with probablhty 1 - p  Stte percolation is generated by 
deciding if a given site is "occupied" (0 -- 1) with probability p or "empty" (0 -- O) with probability 
1 -  p; then W.,.+ 1 = O(n)O(n + l)W. The diffusion constant D(p), defined as 

1 d E [ R ( t ) - R o ]  2 D(p)=- lira 2dV dt "o 
t--~ 

is non-zero only if the system "percolates", 1.e, when an infinite cluster spans the whole sample. This 
happens when p is larger than a certain threshold Pc, the value of which depends on the type of 
percolation (bond or site), lattice and dimension The D(p) curve has a typical "critical phenomenon" 
shape (fig 6 4), growing as 

D ( p ) - ( p - p c ) ' ,  forp>Pc (6 45) 

Right at threshold, the infinite cluster is a fractal, characterized by dimensions dF, d s and d, which 
depend only on the dimension of space d (table 6.1). The fraction P=(p)  of present sites belonging to 

Table 6 1 
Exponents and characteristic &menslons for percolation Most 

of them have been taken from ref [G12], where error bars 
and appropnate references can be found 

d = 2  d = 3  d = 6  

up 4/3 0 88 1/2 
d v 91/48 2 51 4 

cl/d F 0 88 0 725 2 
d s 1 30 1 32 4/3 

backbone dF a 1 62 1 74 2 
ds B 1 20 1 

I.t = 2 /d  s - 1 0 54 0 515 1/2 
I, tdr/I.tSd~(num ) 0 9 1 

t~,. = (d - 2)vp + 1 1 1 88 3 
t 1 30 2 02 3 

tm. ~ = vp(d - 2 + dv/~t ) 1 51 2 07 3 
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Fractal 
Fig 6 5 Schematic structure of the percolation cluster For all physical phenomena taking place at length scales smaller than ~:, this cluster appears 
as an mfimte fractal, while for length scales larger than ~ it appears as a weakly &sordered lattace of mesh size (, one is driven to the homogeneous 
fixed point p = 1 

the infinite cluster grows as 

p = ( p ) ~ ( p  _ p~)t~ . (6.46) 

A length scale st appears (the correlaUon length), which separates "fractal behaviour" (for all 
processes taking place at length scales r <  st) from "Euchdean behavlour" for r >  ~ (fig. 6 5) As 
P ~ P c ,  st diverges like (p - pc)-"p. An example of how to use such a simplifed picture of the structure is 
the following: At short times, the medium seen by a diffusing particle has a fractal structure and thus 
the particle evolves as 

R ~ t  ~ with v = d s / 2 d  F. 

This is vahd until R is of order s t. For longer times, the particle sees an effectwely Euclidean lattice of 
P lattice size st. Each cell acts as a "trap" with release time t e, such that st = te. Hence for t > te, the 

particle diffuses normally, with a diffusion constant 

D=( St ) ~ st2/te ~ ¢ 2 - 1 / u  , (6.47) 

D~o(st) characterizes the motion of a particle startmg on the mfimte cluster, independently of this starting 
point Hence 

D ( p ) = l l m  1 d ~ ] [R( t )_R0l  2 - P = D = + ( 1 - P = ) 0  
vs~ 2dV dt Ro 

(6.48) 

(since the particles starting on a finite cluster will not contribute to the average diffusion coefficient). 
Thus, using (6.45) and (6.47), one obtains [dGe76, Ale82] 

t=  fl + u p ( l l v -  2) . (6.49) 

Percolation is thus the archetype of a "connectedness" transition, separating a connected phase-  in 
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which physical exotatlons can be transmitted from one end of the sample to the other (mass or 
electrical current, mechanical stress, "forest fires", viruses, reformation, etc ) -  from a disconnected 
phase As such, it defines a unwersahty class through which a large number of systems may be 
described (see, e . g ,  [Sta85, Rou89]) As we emphasized m the first chapter, two mechanisms may 
change the unwersahty class of usual (bond or site) percolation 

(a) Strong correlation between the basic umts (e.g attraction), which do not occupy sites indepen- 
dently If those correlations are "sufficiently strong", not only the percolation threshold changes but 
also the critical exponents 

(b) Broad dtstrtbutlons, for example of hopping rates" If one chooses W n n+t with probablhty 
p6(W) + ( 1  - p)p(w), 

p ( W ) ~ o W ~ ' - I  , tx <- 1, 

then the local mean "trapping time" (1 /W)  diverges and one expects deep changes m the value of the 
exponents t, u 

This model has been Introduced by Halperln, Feng and Sen [Ha185a] to retain the important features 
of "continuum percolation", such as the "Swiss cheese model", where one drills holes at random m a 
continuous medium Narrow "bottlenecks" such as the one represented In fig 6.6 will correspond to a 
high local resistivity, l.e , a low local transition rate Indeed, such a broad disorder affects the value of 
t: it has recently been shown [Mac88, Dou88], that, for IX < 1, 

t =  m a x { t 0 , ( d - 2 ) %  + Ix-l},  

where t o is the "pure" percolation exponent. 

6 3.2. Electrtcal properttes of  the percolatton cluster 
6 .32 1. d.c properties From the general theorem of chapter 2 and the above d i s c u s s i o n ,  w e  

immediately know how the conductwlty grows when p crosses Pc. Indeed, from (2.15), the d.c. 
conductwlty o- is tdenttcal to D if the local hopping rates are chosen as W, ,+~ = (aZ/C)trn ,+~ Hence 

D = o - ~ ( p - p c ) ' ,  t = / 3 + % ( 1 / p - 2 ) ,  

or, introducing d v = d - / 3 /% and v = ds/2d F, 

t/% = d -  d v + 2dF/d s - 2 (6 50) 

~ 6 

Fig 6 6 Narrow "bottleneck" through which current must pass near the continuous percolation threshold The possible dependence of the local 
"conductw~ty" on the width 8 may reduce a broad d~stnbutlon of waiting times and hence change the umversahty class of percolatmn [Hal84, 
Mac88] 
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A very important lower bound on t can be found using the exact result on "red bonds" derived by 
Conlglio [Con81]. He found that the number of hnks carrying all the current ("hot bonds") is, per 
"cell" of size ~: (see fig. 6 5), 

Nrb = ( p - - p c )  -1 . (6 51) 

Setting the resistance of all other bonds equal to zero, one finds an upper bound on the conductivity, as 

~(~)  - L2-ao.-~(~) > (~/L)d-~(L/~)Nrb, 

2 - d  - 1  
or o-(s~)<s c Xrb or t > ( d - 2 ) % + l  

(6 52) 

(which In fact is exact in dimension 6, the upper critical dimension for percolation) 
An analogous argument allows one to gwe also an upper bound (of geometrical origin) on t [Plk81], 

t < (d - 2) Vp + t,pdv/~t, (6 53) 

which has the following interpretation: Single out the shortest path spanning the distance ~, and set all 
other resistances to lnfimty. One thus obviously has 

~(~)  < (~/L)d-2se , 

d or, with S ~ -  s ~a~, 

> 

which yields the above result on t. Bounds (6.52) and (6 53) are quite narrow, as can be seen from table 
6.1. In particular, they coincide for d > 6. Note that (6.53) may also be wntten as d < ds/(2 - ds) [see 
the remark after eq. (6.59) below] 

It is fairly obvious that on the percolation cluster one should distinguish links which participate in 
(electrical) transport, and links which do not (dead ends) Removing all those "cold" bonds generates a 
new object, the "backbone", which has its own characteristic dimensions dF s, d B, ~B. As the 
conductivity obviously remains unchanged, one has the relation [see eq. (6.50)] [Sta84] 

dv(2/d s 1) B B - ~ d v ( 2 / d  s - 1 )  (6 54) 

(which IS not very well satisfied by numerical results, see table 6.1) Said differently, the average 
diffusion coefficient D is unaffected, while the diffusion coefficient for particles restricted to the 
backbone is enhanced-  since the delays reduced by the dead ends are removed. One has precisely 

B DS~ = (P~/P~)D~, (6 55) 

where pa  (<p~)  IS the probablhty of being on the backbone. Equation (6 55) has a simple meaning: 
Wntlng Do. = ~2/te, one finds t, - P~. Since the process is ergodlc, the walk spends, in each region of 
space, a time proportional to the number of accessible sites in this region. 
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Note that the shortest path between two far away points must belong to the backbone, and hence 

S~ ~ ~d~/a ~ ~dBV'dB ~ dv/~ l = dB/~l B (6.56) 

6.3 2 2 a c properties. The a c propemes of the percolation clusters call for a few clarifying 
comments, which echo those formulated m section 2.2.1 on the "electrical Einstein relation". First, one 
must clearly distinguish 

(1) the problem of a random walker on the structure, dnven by an oscillating external field, which is 
dealt with in section 6.2.2, 6 3 4 and 5.2, from 

(11) the problem of the a.c. conductivity - generally Implicitly defined through the input impedance - 
of an electrical network 

The latter problem must then be further speofied, smce for non-zero frequencies capacitance effects 
come into play [Con89, Cle90] 

Hence, one may, for example, consider two completely different physical situations 
(1) Each bond carries either a resistor with probability p or a capacitance with probablhty 1 - p. Thls 

is a standard model for a metal-insulator mixture. In this case, it is known [Efr76, Dao88, and 
references therein] that the macroscopic a.c. properties near Pc are related not only to the exponent t 
introduced above, but also to the exponent s describing the divergence of the conductivity of a 
conductor-superconductor mixture 0.e. ,  a percolation network m which each missing bond is consid- 
ered to be of zero resistance), 

o- (p - p c )  ' 

In particular, the high-frequency behavlour of ~r(to) near Pc is given by 

to) to.(s +,> 

(= to 0 72 in three dimensions) This behavlour has been experimentally confirmed on three-dimensional 
metal/insulator mixtures [Nik87] 

(11) A second situation of interest may be the following: Missing bonds have zero capacitance but 
each node is connected to the ground by a finite capaotance The random walk analogy (section 2.2.1) 
may be used to estimate the penetration depth Lp(to) of the alternating input current in the sample. In a 
time to-l, the particle in the diffusion problem probes a region of depth Lp(to) ~ 60-~ The admittance 
A L(to ) thus becomes independent of the total depth L of the sample, and can be obtained through 

Ac(to) = ~,o-(to = O) f (L /Lp )  ~ X L - ' % - l f ( L t o  ~) 
L 

f ( x ) - ~  ° 1 ,  f(X)x'~oox t/vp+l 

(,~ IS the surface of the electrode) Hence, 

AL(w ) = 2to v(t/vp+l) , for Lp ~ L .  

This result has been obtained in shghtly different terms by Rigord and Huhn [Rig88], and checked 
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experimentally on a model system. Note that it does not coincide with the extension to non-zero 
frequency of Einstein's relation proposed by Gefen, Aharony and Alexander [Gel83], which leads to 

At(O) ) ~ 0"(¢0) ~ P~(w)D(¢o) ~ (.0/3V/VP(.o 1-2u 

For more work on this subject, we refer the reader to [Con89, Cle90] and references therein. 

6.3.3 Dead ends as deep traps: diffuston on the percolation cluster for d > 6 
The mechanism leading to anomalous diffusion on the percolation cluster can be very clearly 

identified in high dimensions, where the geometrical structure of the cluster is fairly simple. Indeed, in 
"sufficiently high" dimensions, the stenc constraints are asymptotically irrelevant and hence the 
percolation cluster can be thought of as a backbone (which is a linear random walk, dF a = 2, a B= 1, 
d B = 1) with a finite density of dead ends branching out. As the structure is statistically self-similar, 
those dead ends are themselves random walks with branches, and so on. It is easy to show (working, 
e.g., on the Bethe lattice [Sta85]) that the ffactal dimension of the percolation cluster is d F = 4 for d > 6 
(when d F + d B = 4 + 2 becomes larger than d, that is, when d < 6, the structure and intersections 
between the dead ends and the backbone cannot be so simple) 

From eqs. (6 54)-(6.56) one thus readily obtains 

= 2 ,  d s = 4 / 3 ,  (6.57) 

and hence R 2 ~ t 1/3 in high dimensions The value d s = 4/3 has been conjectured (on a numencal basis) 
to be "superuniversal" by Alexander and Orbach [Ale82], i.e., independent of the dimension. 
e-expansion (e = 6 -  d) [Har84, Wan86] and very precise numencal simulations for d = 2 [Nor88], 
however, seem to rule out this conjecture. 

We would like to show how (6.57) may be recovered in a way which underlines (i) the basic 
mechanism responsible for this slow diffusion, that is, trappmg in the dead ends, and (ii) the connection 
between the value of d s and purely geometric features It would be interesting to find a generalization 
to d < 6 of the following arguments. 

The idea is to model the structure as a random comb with a "crumpled" backbone. The spikes of this 
comb are in fact clusters containing n sites with probability ~(n). It is easy to show that, as the 
intersection with the backbone can be anywhere in the duster,  ~ ( n ) -  n 1-~, where r is the cluster 

-(1+~) 
distribution exponent in Stauffer's [Sta79] notation (r = 5/2 for d > 6). Hence ~b(n) decays as n 
with/~ = 1/2 

The problem of a random walk between "traps" (spikes) of fluctuating size is not trivial since it a 
priori combines a quenched aspect (the particle visiting twice a given spike sees twice the same 
environment) and an annealed aspect, since the exit time of a given region of space is distributed - due 
to thermal disorder. A "mean field" approach would consist In neglecting the quenched aspect and to 
use the effective trapping time distribution ~b(t) to obtain the diffusion law much as in chapter 2. ~b(t) is 
obtained as 

~(t) = f dn ~O(n)P,(t) , 
1 

where P,(t) is the probability of first return to the starting point, related to the probability of presence 
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P0 on this site For Laplace transforms (appendix A) Pn(E)  = 1 - Po(E) -~ Hence 

(2 /;dF~ P.( t )  ~ t 

oc 

t~dF 

(t ~dF < n ) ,  P , ( t )  ~ 0  (t ~d~ > n ) ,  

tUdF-2n -(l+t~) dn ~ t - [ l+ l+vdv(~- l ) l  

(6.58) 

u is the exponent we are in fact looking for, since It also governs diffusion In the dead ends (the 
structure is self-similar) 

The number of "traps",  N(s) ,  encountered along the backbone must be such that 

nma~(N(s)) N(s) 

2 n, = N ( s )  f n d n  (sa/dvld ~ 
t=  1 /./1 + ~  

so that the correct number  of sites in a sphere of s i z e  S d/dF iS recovered Hence N ( s ) ~  s "a This, in 
particular, imposes that ~ d  -< 1; for d = 6, one has / zd  = 1 The time needed to travel a distance s along 
the (one-dimensional) backbone is given by [cf. eq (6 58)] 

t ~  [N(s)]  e/ll+~dF(~-l)] 

And since R ~ s ~ / d F  ~ t ds/2dF, one finally obtains 

d s = 2/(1 +/.t) (6.59) 

for any it, d F. In particular, for d > 6, /x = ½ and one indeed recovers d s = 4/3 Table 6.1 shows that 
/z -~ ½ in all dimensions 

Remarks 
(a) Note that d# -< 1, together with (6 59), is equivalent to (6 53) 
(b) This picture suggests that for p = Pc and in the presence of a static field, 

R ( t ) - ( l n t )  1'~ 

with a ~- 1 Indeed, the local trapping time is in this case expected to be 

t = exp(FoanlJd~/kT) 

Hence, the distribution 

1 
~,(t) 

t(ln t) ~+~dv 

Using arguments of [Hay86, Bun87, G12], one finally obtains 

( lnt)  " d ~ - N ( s ) - s  "d or R - l n t  

(c) One may wonder whether the preceding "annealed" analysis is exact or not An analogous model (with purely 
one-dimensional spikes) was considered in [Hay87], and numerical simulations are in very good agreement with the annealed 
prediction We strongly believe that this analysis is exact, as the same result may be reached through the following argument 
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Assume that the longest trapping time encountered m N steps is tmax(N ) Clusters must be divided in classes 
- totally explored clusters, such that t~md~ > n, 
- partially explored clusters, such that t~md~ < n 
As the particle makes a one-dimensional random walk along the backbone, the number of &fferent spikes encountered is N 1/2, 
each of which is visited N 1/2 times Out of those N 1/2 only 

V ~  f dn ~ x/-~t-.~ev 
1 + ~  " ~'~max 

vd F 
tmax 

are partially explored and thus effectzvely mfintte (the quenched aspect, related to the finite size of those spikes, is thus irrelevant 
for those spikes) The particle visits 

1/2 1/2 - l~vd  F 
N ~ = N N t m a  x 

times lnfimte traps with a release time dlstnbutmn t - (2-~)  The longest trapping time is therefore (cf ch 1) 

/max = N1S (1 ~a~) (for 1 - vd F <- 1) 

Hence 

which gwes back the above result Note that the totally explored clusters get hold of the parhcle dunng a t i m e  ( n m a  x = t ~av) 

nmax 

t 1 = N J n dn n °+~) , 

/ .  

since they each act as a trap of mean release t~me proporhonal to n Therefore, t 1 is also of order tma X 

The results of this sectmn are thus as follows: 
(a) We have shown that an annealed approach to the "random comb" problem is essentially exact, 

thereby confirming the numerical simulations of ref. [G12]. 
(b) The diffusion exponent on the percolation cluster for d > 6 is related (through the trapping of 

the particle m deep dead ends) to geometncal charactenstics of the structure. It would be nice to relate 
(tf at all possible) - m the same sprat but in lower dimensions - the spectral &menslon to other, mainly 
static exponents. 

6.3.4. Biased diffusion and dispersion on the percolation network 
6.3.4.1. Uniform (oscdlatmg) external field. The analysis presented in section 6 2.2 must be adapted 

to the percolation problem since for p > Pc diffusion becomes normal for R > ~:. It is fairly easy [Bou90] 
to determme the behaviour of the amplitude of motion A(to, F0) in the whole (to, Fo) (frequency, field 
amplitude) plane for non-zero frequencies (for to = 0, see [Rou87a]); see fig 6.7. Note that A(to, F0) is 
always a decreasing function of F 0 for large F 0 

6.3.4.2. Pressure (or voltage) drop across the sample ("mternal bias"). Suppose now that a pressure 
drop AH is applied at the boundaries of, say, a non-wettable porous me&um in which a hquid has been 
mjected with a pressure shghtly larger than the break-through pressure (h//c) [dGe78]. The invading 
fluid has the structure of a percolation network It obeys an effective Darcy law for length scales larger 
than ~, in which the permeabdlty is the strict analogue of the electrical conductwity (e.g. [Guy87]), 

P~U = k( ~ )F17 , (6.60) 
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F 0 
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F0 (2 ~-2v 

~2-~Fo 
V (eo,~) 

Fig 6 7 Full "phase diagram" [Bou90] for biased diffusion on the percolation cluster, m the (to, Fo) plane, for finite s e The laws govern the 
"velocity" V(to) = ~oR(~o) Note that V is always a decreasing function of Fo for large forces Solid hnes are crossover lines The velocity V is related 
to the amplitude of motion A(to, Fo) through V= toA 

with k(s c) ~ ( p - p J .  This is vahd for [VH]/AII--L-I ,~ ~:-1, 1.e , for samples with size much larger 
than ~: For L - ~:, the time te needed to cross the fractal network must clearly be intrinsic, i.e. lnvariant 
under "fractal deformation". But 

~: ~:P~ P~:  
te V k(se)lVIII p~2-1/~ ]VIIi -1 

NOW, under a fractal deformation, the pressure drop AH is obviously unchanged, but not the pressure 
gradient; and indeed (replacing VII by AII/sc), one has 

t~ ~ ~2dF/ds(AII)--I , (6 61) 

which 1S intrinsic since ~ :dF is the (conserved) mass, and d s is intrinsic. 
If a dye is injected in the flowing fluid, one may observe dtspersmn due to trapping in the dead ends, 

and thus define a dispersion constant DII(U, ~:) This problem was first studied by De Gennes [dGe83], 
his result can be recovered very easily through the simple model presented in section 5.7 and the 
associated formula (5.56), 

DII(U, s e) = ½fU2(r2) / (r)  

( f  lS the volume fraction of "traps", which is 1 for the percolation problem, since most sites belong to 
dead ends, dE B < dE) (rE) and (z)  can be computed using (6.58) as the distribution of waiting times, 
cut off above tma x = ~:I/~, and with an exponent/z  = 1/2. One finds ( r  2) ~ ~l/~(z) (this is, however, 
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not true for arbitrary ~!). Finally 

Oil ~ Uz~ x/~ , (6.62) 

with U given by (6.60). In this formula, U is the average velocity and not the velocity of the flow on the 
backbone, as emphasized by De Gennes [dGe83]. 

Remarks 
(a) The time ~2/DII = (~/U)2~ -1/~= ~:1/~ AH-2 ts mvanant under a fractal deformation keeping AH fixed-contrary to a 

worry expressed by Vanmmenus [Van84] 
(b) This problem has been qmte carefully investigated numerically (m two &menslons) and the law (6 62) is found to be 

satisfactorily obeyed [Kop88] 

7. Conclusion 

It seems to us that a paper like this should end with a list of open problems, great or small, which are 
suggested here and there in the body of this review, or which are natural generalizations of the models 
considered above. We shall list them chapter by chapter as they appear in the article, regardless of their 
relative interest or difficulty. 

1. A general theory of the limit distributions for sums of correlated random variables is still, to a 
large extent, lacking (attraction basins, dependence of the limit law on the structure of the correlations); 
as mentioned in secuon 1.3, tools inspired from the renormalization group are probably well suited for 
investigating this question. In the same spirit, an analytic calculation of the full average diffusion front 
in Matheron-de Marsily's layered model (section 1.3.2 and appen&x C) would also be welcome. 
Self-consistent approaches "h la Flory" to various problems involving "relevant" correlations, when 
interpreted along the ideas of section 1.3.3.2, also raise a number of questions: Is Flory's approximation 
really an upper bound to the true value of v, as suggested in section 1.3.3; similarly, is 4/(4 + d) a lower 
bound in the case of linear polymers? Finally, could one devise approximations "~ la Flory" for the 
cntical exponents of more general critical phenomena [e.g., the O(n) model]? 

2. The sample to sample fluctuations discussed in section 2.1.2 deserve further study, in particular 
regarding the equivalence between different averaging procedures. An interesting question m this 
respect, which we believe to be connected with some physical issues in relaxation processes, is that of 
ergodicity: in precisely what circumstances does the histogram of the positions of one particle in a gwen 
sample (correctly rescaled) coincide with the average over disorder of P(x, t)? This question is 
particularly intriguing in Sinai's problem. 

Other, more specific, unsolved questions encountered in ch. 2 are the shape of the scaling function 
describing the diffusion front for random traps (in d < 2) and random barriers (in d = 1) with broad 
distributions of inverse hopping rates (including the mere existence of a CLT for a fixed sample m the 
random traps case) and the exact calculation of the prefactors of the diffusion law. 

3. A proof that the &ffusion coefficient is self-averaging for a general one-dimensional asymmetric 
hopping model (a physically likely property) is still lacking (it has been provided in [As189a] for the 
directed limit only). 

A number of features of the remarkably rich one-dimensional random-force model of section 3.3 
(and of the similar asymmetric hopping models) still deserve investigation, m particular in the/z < 1 
phase. As discovered by Golosov [Go184] and reviewed in section 3.3.2.2, two particles starting at the 
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same point and subjected to different thermal noises do not separate with time, one may thus ask the 
following complementary question what happens to two particles initially separated by a distance L 9 
Our guess is that for/.~ = 0 they meet after a finite time t [typically of order exp(L 1/2)] and remain close 
ever thereafter What happens for/.~ > 0? Clearly, the/.~ < 1 phase shares a number of similarities with 
glassy dynamics. Does this phase exhibit ageing phenomena (l.e non-stationary evolution), like the 
dynamics of spin glasses below Tg [Lun85, Alb86, 87], as suggested in [Fe188]? 

The physical situations to which this model applies also raise questions: numerical simulations of the 
relaxation of the random field Ising model in a + H field, initially prepared in a down-spin configura- 
tion, would test the predictions made in section 3.3.7.1, 3, and allow one to investigate more precisely 
the interplay of domain wall creep and nucleation; a more detailed quantitative study of dislocation 
motion and comparison with experiments is also an interesting path to follow [Bou89g] 

4 A number of open problems and questions are also raised by the random-force model in higher 
dimensions" 
- The effect of a bias in the potential case, m particular, when unbiased diffusion is logarithmic (d < 2 
for a > d and a < 2 for any d > a): could there he a zero-velocity ("creep") phase as in d = 19 
- D o e s  the Golosov phenomenon still hold for this logarithmic diffusion? 
- T h e  nature of the sample to sample fluctuations (i.e., the possible differences between the diffusion 
behavlour for a given sample and the average one), in particular in the long-range correlated case 
- Almost nothing is known on the shape of the diffusion front in this model for d > 1 
- A more detailed study of the effect of the anlsotropy in the random-force correlations (see [Dug89] 
for a most recent first study) is required, in particular of the crossover between isotroplc situations and 
the layered models of section 1.3 2 
Here again, possible applications to physical situations raise perhaps the most interesting questions: 
- H o w  well does the hydrodynamlcal case dlv F = 0 with long-range correlations (namely a close to 
-2 /3 )  describe turbulent diffusion? In particular, what is the asymptotic diffusion front for this model 
and does it compare favourably with experlments9 Could the diffusion exponent for turbulent diffusion 
continuously depend on the compressibility of the fluid, as the line of fixed points of section 4.3 2 
suggests? 

5. It has been shown in section 5.4 that the response to a weak external oscillating field exhibits 
(especially in one dimension) non-trivial crossover behaviour. For a given frequency, the response is 
linear in the field only for very weak fields F < w ~ Could the non-linear mobility predicted for higher 
fields be observed, either in one-dimensional ionic conductors [Bey81], see sections 5 4 2, or in a biased 
version of the Cardoso-Tabellng [Car88] experiment on diffusion among convection rolls, see section 
1 2.3.3? 

6 Finally, we have obtained in section 6 3.4 1 the full "phase diagram" for the behavlour of a 
particle subjected to an oscillating field on the percolation network. Numerical simulations at the 
percolation threshold agree well with our theory, simulations off threshold would also be most 
welcome. 

Finally, a few general questions are the following. 
- I n  most diffusion models considered in this article, the effect of inertia is neglected. For the 
random-force model, for example, it is natural to wonder what happens to the laws obtained in chapters 
3 and 4 if the Inertia of the particle is taken into account, that is, if the Langevin equation is written as 

m X  e + y X  e = F ( X ~ )  + q ( t )  . 

Our guess is that at long times the behaviour is not modified by a non-zero mass rn 
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-Similarly, what are the diffusion laws if disorder is not quenched but evolves with a gwen time 
autocorrelation function? Brownlan diffusion is probably recovered at times much larger than the 
correlation time of the disorder. 

We think, however, that the most interesting and fruitful path to follow is the dynamics of lines 
(polymer, dislocaUon, vortices, step on a crystalline surface, etc.) or surfaces (domain wall, etc.) in 
random media, which apphes to a rich variety of physical situations (spin glasses, disordered type II 
superconductors, etc.) In other words, one tries to understand the role of the internal degrees of 
freedom in the overall motion of the "defect" Such an investigation has of course already been the 
subject of several works; we hope that the general ideas and methods developed here could help to 
make some progress m the quahtative understanding of these problems 
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Appendix A. Some useful results and techniques in the theory of random walks 

This appendix is only a bnef (and lacunar) summary; the reader is referred to refs [G1, G5-G9, 
G13] for further information. 

A.1 Random walk on a regular latttce, master equation, probabthty of presence 

A discrete-time random walk process on a regular lattice is defned by the probablhty p(e) to jump 
from site X to site X + e at each time step The probabihty P(X, t) to find the walker on site X at ume t 
obeys the master equation (which simply expresses the conservation of probabihty) 

P(X, t + 1) = ~ p(e)P(X - e, t) (A.1) 
e 

(the time step has been normalized to unity). Equation (A.1) has to be supplemented with initial 
conditions, e.g., 

P(X, t = 0) = 6x, o (A.2) 

Translation lnvarlance allows one to solve (A.1) by Fourier transforming. Defining 

P(k, t) = ~ e - l k  Xp(x, t) ,  (A.3) 
X 
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the solution of (A 1), (A.2) reads 

P(k, t) : [p(k)]', (A 4) 

where p(k) is the structure function characteristic of the lattice, 

p(k) = ~ p(e) e -'k" (A.5) 
e 

For a d-dimensional hypercubic lattice with only nearest-nelghbour lumps, 

1 a 
p(k) = ~ ~ cos(ak ) (A 6) 

p . = l  

P(X, t) is recovered by integration over the Brllloum zone of the reciprocal lattice, 

P(X, t) = L d f ddk e 'k xp(k, t) (A.7) 

In the large-time hmlt this integral is dominated by the vicinity of k = 0 (since I p(k) l  < 1); hence P(X, t) 
is asymptotically a Gaussian distribution [D = (det D ¢/dl ~ v ]  1 '  

1 
(X,  - V , t ) n - ~ ( X ,  - V t)) (A.8) P(X, t)--) ( 4 7r Dt) -d/2 exp(-  ~ 

where the velocity V and diffusion tensor D~ are given by 

V ~ = ~ e ~ p ( e ) = ( e ~ } ,  
e 

(A.9) 
D , ~ = l [ ( e  e } -  (e }(e }] 

This illustrates the remarks made in section 1 1 on the central limit theorem: In the regime where (A.8) 
apphes, only the first two moments of p(e) remain and the detailed structure of the lattice is washed 
out. For the simple hypercubic example, 

2 D ~ = (a /2d)8~ (A 10) 

Restonng the time step r0, these expressions for V and D must be dwlded by %. Substracting P(X, t) on 
both sides of (A. 1), the continuum limit r o--) 0 is taken by keeping W(e) = p(e)/r o fixed, leading to the 
continuous-time master equation, 

__°e = ~,  W ( e ) [ P ( X -  e, t) - e ( x ,  t)] . 
at e 

W(e) is the hopping rate per unit time 

(A.11) 
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A.2. Dtstributton of first passage ttme and number of vtstted sttes 

Let us denote by P~(X, t) the probablhty that a walker starting on X = 0 at t = 0 first reaches X at 
time t It obeys the following relation" 

P(X, t) = ~ P,(X, t')P(X, tlX, t') , 
t ' = l  

which expresses the fact that, in order to be on site X at time t the walker has to reach this site for the 
first time at any time t ' =  1, 2, , t and then to be again on X at time t On a regular lattice, 
translation invarlance allows us to put this relation in the form 

P(X, t) = ~ PI(X, t')P(O, t -  t') . ( a  12) 
t ' - I  

This can be solved by introducing the generating functions 

?(X, A) = ~, P(X, t),V , ?~(X, A) = 2 PI( X, t) At (A.13) 
t=0 t=l 

(note the difference in the range of summation, due to the fact that PI(X, 0) is non-zero only for X = 0) 
Formula (A.12) then reads 

?(X, /~) -- ?(X,  0) = ? l (X,  ,~)?(0, /~), 

which finally yields 

/31(X , A) =/3(X, A)//3(0, A), X ~ 0 ,  /31(0, A)= 1 - /3(0,  A) -~ (A.14) 

Using (A.4), /3(k, A) reads 

/3(k, A) = [1 - Ap(k)] -1 (A.15) 

Several interesting quantities can be obtained f rom/3  (X, A). The probability to visit site X at least once 
reads 

PI(X, t) =/31(X, A = 1), (A.16) 
t=l 

which, for X = 0, IS the probability to come back at least once at the initial site, 

Po =/31(0, A = 1) = 1 - /3(0,  1 ) - ' .  (A.17) 

In the simple case of a hypercubic lattice with nearest-neighbour jumps/3(0, A) reads 

f A d -, /3(0, A):(~a-~) a d d k ( 1 - ~  ~ cos(ak~,)) . (A.18) 
/x=l 
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This integral is infra-red divergent for A = 1 If d -< 2 and converges for d > 2. As a result, the walker 
always comes back to its initial poslt~on in d -< 2 (p0 = 1) while P0 is finite for d > 2 (p0 = 0.3405 . for 
a cubic lattice) The divergence of P(0, A) for d < 2 is characterized by 

/3(0, (1 -- , d < 2 ,  

/3(0, d = 2 ,  
, t ~  1. (A.19) 

Using (A 14), this yields the time dependence of the distribution of the first passage Umes at the initial 
site, PI(0, t), at large time, 

PI(O, t ) -  Ca/ t  2-d'2 , d < 2 ,  

Pt(O, t ) ~  c/ln t , d > 2  
(A.20) 

Another quantity of physical interest is the distribution of the number S t of visited sites. This 1s a 
difficult problem, of which no full explicit solution is known. (Note that the probabihty that S, = t is 
proportional to the number of self-avoiding walks of t steps on the lattice!) The average value of S, can, 
however, be obtained from PI(X, t), since 

S~=1+ Z ~ P~(X,t) ( A 2 1 )  
X:~0 t'=l 

(2',,= 1 PI(X, t) is the probahhty that X has been visited between t' = 1 and t' = t.) The generating 
functions are thus related by 

S(A) = (1 - /~ ) -2 /3 (0 ,  /~)-1 (A.22) 

Using (A.19) together with 

/3(0, A) ~ A d + Xd(1 -/~)d/2-1 + . . .  2 < d < 4 ,  

/ 3 ( O , A ) - - A d +  B d ( A - - 1 ) +  Xd(1--A)d/2-' + • , d > 4 ,  
(A.23) 

leads to 

I t all2 + 

) t/ln t + , 
St ~ ] t /A a + adtZ-d/Z + 

~t /A a + Bd/A d + 

d < 2 ,  
d = 2 ,  

, 2 < d < 4 ,  

, d > 4  

(A24) 

The average number of VlSltS of a site thus diverges at long time for d < 2, while it is fimte for d > 2 
This is of great importance to understand the effect of disorder on random walks (see in particular ch. 
4) 
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A.3 Continuous-ttme random walks 

A general continuous-time random walk (CTRW) is defined by the probability $(e, t) dt that the 
walker remains for a time t at a given site before performing a jump of length e between t and t + dt. tp 
is normalized by 1 = ~'e f o  dt $(e, t) The probability that the walker remains at the same site between 0 
and t thus reads 

~(t) = 1 - ~ i 0(e, t') d t ' .  (A 25) 
0 

Let us consider a single walker with initial condition P(X, t = 0) = 8x. 0 and denote by Q(X, t) dt the 
probability that the walker has arrived on site X between t and t + dt and has not moved since. P(X, t) 
and Q(X, t) obey the following coupled equations: 

t 

P(X, t) = ~ dt' c~(t - t ' )Q(X,  t') + ch(t)6x o , 
P 

o (A.26) 
l 

Q(X, t) = - -  E J dt' tp(e, t -  t ' )Q(X - e, t') + E tp(e, t)SX_e.O, 
1 .  

e 

0 

which are easily solved by Fourier-Laplace transform (on space and time, respectively), 

~(k; E) /3(k; E) = 1 -  t~(k = 0, E) (A27) 
Q(k; E ) =  1 - t~(k; E) ' El1 - ~(k, E)] 

Remark When considering other types of initial conditions (e.g., for a stationary lmtlal state) the 
first lump requires a special treatment and the solution (A 27) is modified For a thorough discussion of 
this point, see e.g ref. [G13] and references therein. 

The CTRWs considered in chapter 1 are separable, I.e., such that 

~b(e, t) = p(e)O(t) , (A 28) 

where p(e) Is the jump length dlstnbution and $(t) is the waiting-time distribution (w.t.d.). Then 

1 -  ~(E) (A29) 
/3(k; E ) =  E[1 - qt(E)p(k)] ' 

from which the diffusion behavlour and diffusion front of section 1 2.3.1 are easily derwed by expansion 
for small E and small k. Two particular cases are worth mentioning: 
* Poissonlan w.t.d $(t) = W exp(-Wt), for which jumps are performed at a constant rate W In this 
case 

1 (A.30) /5(k, E) = E + W[1 - p(k)] " 
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* The discrete-time random walk of section A.1 is recovered provided one chooses 0(t) = 6(t - %) 
Then 

f i ( k ,  E )  - 1 - e -E ' '  1 
E 1 - e-E'°p(k) ' (A.31) 

and one should identify A in (A 13) with exp(-Er0)  Note, however, that the two expressions (A.15) 
and (A 31) are different, not surprisingly, the resulting values of P(X, t) only coincide for times t = nr o 
with integer n 

Appendix B. Limit distributions for sums of independent random variables; stable laws 

Consider the following sum 

Z,, = 2 x~, (B.1) 
k = l  

where the x k are independent and all distributed according to the same probablhty distribution p(x) 
One would like to know the answer to the following queshons 
- H o w  must one choose the two normahzations An, B n in order to obtain a limit distribution (when 
n--~ w) for the rescaled variable u = Zn/B n - A n 9  
-What is the distribution P(u) such that 

u 2 

Prob[u 1 u ~- f P(u) du 9 -< u ~ (B 2) 
u I 

In this case, one says that p belongs to the attraction basin of P 
This problem is a classic in probability theory since the work of Khintchlne and Levy Useful 

references are refs [G2-G4], with a particular mention of the brilliant book by Gnedenko and 
Kolmogorov [G2], from which we have extracted most of the material presented in this appendix 

B 1 Attractton basm of the normal law and convergence towards tt 

The following theorem characterizes fully the situations where P is the Gausslan (normal) law" 

Theorem 1 (Khlntchine, Feller, Levy) p(x) belongs to the attraction basin of the normal law if and 
only if 

hm X 2 "~l~J>x p(x) dx 
= 0 (B 3) 

~ flxl~X x~(x)  dx 

This theorem 1s the most refined form of the CLT mentioned in section 1 1 It allows one to state that, 
for example, a distribution p(x) decaying as x -3 for large x belongs to the attraction basin of the normal 
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distribution, even though its variance is infinite. All the distributions decaying faster than the latter also 
belong to the attraction basin of the Gaussian, which is thus extremely vast. This is of course the reason 
why the Gausslan law is omnipresent in physical situations, "anomalous" behaviour being comparative- 
ly rarer 

Concerning the normalisatlons An, B n one has the following theorem: 

Theorem 2 If and only If p(x) has a finite variance tr = ( x 2 >  - (X> 2 will the normalizations read 

B n = V'-~--n, ( B  4 )  

A n B , = n ( x )  . 

P(x) then reads G(x)= (270 -1/2 exp(-xZ/2). 

( B . 5 )  

The fact that a finite tr IS a sufficient condition was already known to Laplace (see, e.g., ref. [G9]). 

Convergence towards the normal law [Chebyshev 1887]. It Is possible to characterize In a precise 
manner the convergence of P(x) towards the normal law when n ~ oo by a systematic expansion of the 
difference in powers of n -1/2. One obtains (for (x)  = 0, tr = 1) 

Z 

[Pn(U) - G(u)] du = (27r) -a/2 exp(-Z2/2)  + Q2(Z) + " "  + k/--------q-- +" " , 
n n 

-c¢ 

(B 6) 

where the Qk are polynomials (see ref. [G2] for their general expression), the first two of which read 
( t~k = (Xk)conn/O "k/2) 

QI(X)=IA3(1 x2), Q2(x  ) (10/6!)AZ3xS + , a 5 2 - = + 1/ 4)x 

Hence the way P converges towards the normal law G depends upon the detads of the minal dtstnbutton 
p through higher and higher moments for shorter "times". 

B.2. Stable laws; general charactenzanon and attraction basins 

The distribution of the sum of two independent variables 1s the convolutton of their probability 
distributions. Therefore the fundamental property allowing the classification of all possible limiting 
distributions Is the invarlance of these under convolution. More precisely, 

Theorem 3. For P(x) to be a possible limiting distribution for the above reduced variable, there must 
exist, for all a 1, a2(>0 ), bl, b 2 two quantities a(>0),  b such that 

P(alx + bl) * P(a2x + b2) = P(ax + b). (B.7) 

In particular, the normal law satisfies this condition. In Fourier space, convolution is simply multlphca- 
tlon of the Fourier transforms. Hence the classification of stable laws takes a particularly simple form 
stated in terms of their characteristic functions. 
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Theorem 4. Canomcal representation of stable laws (Levy, Khlntchine). P (x)=(2" t r ) - lx  
[~_~ e'k@(k) dk is a stable law if and only If ItS characteristic function reads 

In e(k)  = 13'k - -  Clkl"[1 + 1/3  sign(k) to(k, tx)], (B.8) 

where/z , /3 ,  3', C are real numbers such that - 1 -</3 -- + 1, 0 </~ ~ 2, C -> 0, and 

to(k,/.t) = tan(zqz/2) for tz ¢ 1, to(k,/.t) = (2/zr) In Ikt for /z  = 1 (B.9) 

3' and C are simply "scale" factors, associated to change in origin (x ~ x + cte) or dilatation (x-~ rx) 
The two really important parameters are thus/z and fl, and we shall denote the stable laws by L..~ tz 

characterizes their large-x behaviour: L~.,t ~ -~ Ixl -(1+") (for ~, <2) .  All the positive moments (Ix[ k) of 
L~.,t 3 are finite for k < /z  and infinite otherwise In particular, the variance of L~,,t ~ is infinite for/x < 2 
The number fl characterizes the asymmetry of these laws" 
-for fl = 0, one has an even function of x, 
- f o r  fl =-+1, the law is "maximally" asymmetric, I t  IS, for 0 < / x  < 1, concentrated in ]-0% 3'] for 
/3 = - 1  and in [3', oo[ for/3 = +1 

For /z  = 2,/3 disappears since in that case to = 0; one recovers the unique normal law centred on 3'. 
Some explicit forms and asymptotic expansions of L..t3 will be given in the next section The initial 
problem is completely solved by the following theorem, characterizing the attractton basin of stable 
laws 

Theorem 5a (Gnedenko, Doebhn). p(x) belongs to the attraction basin of L~,,t ~ if and only if l tS 

repartitlon function R(X) = .[x_= p(x) dx satisfies the following properties: 

R ( - X )  1 - fl (B 10) 
(1) hm £CR---~) - 1 + fl S - - )  ze 

(il) For any r, 

1 - R(X) + R ( - X )  
hm = r" (B 11) 
x ~  1 - R(rX) + R ( - r X )  

This theorem echoes theorem 1 for the normal law. It means that Lt,,t ~ attracts all the distributions p(x) 
which essentially behave as L~,,t ~ at infinity. As such, this theorem does not specify the normahzatlons 
A n, B n to be chosen (see, however, ref. [G2], p 175) A very important practical case is when p(x) 
decays purely algebraically; in this case, B n = n 1 /~  (apart from logarithms for/z  = 1, 2), and the most 
useful theorem, specifying the behaviour guessed by the simple arguments of section 1 1, is: 

Theorem 5b (Gnedenko) p(x) belongs to the attraction basin of L~,,t ~ with B. = n 1If', if and only If 

p(x)=c_lxl -('+') if p(x)=c+x -"+") if x ~  (B.12) 

Then/3 = (c+ - c_)/(c+ + c_) and 
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+ c_) 
A , = 0 ,  C=2ixsintTrixl2Xr¢ix ~ '  t ) ' t  ) for 0 < I X < l ,  (B.13) 

+ c_) 
A . B .  = n(x )  C = f o r l <  < 2 "  (B.14) 

' 2IX 2 sln(crix/2) F(IX - 1) ' IX ' 

for IX = 1, IX = 2, see ref. [G2]. 

Let us sketch the proof  that a distribution p(x) satisfying the above conditions indeed belongs to the 
attraction basin of L~,,~. Following the lines of section 1.1, one has to study the limit of ~(k /N  ~/'`) for 
large N. It is easily seen that  in this limit one has 

( c + - c_ Im(I~< ) ) 
Ikl~ (c+ + c_)Re(I~,)  a - l s l g n ( k )  ~ R e ( l ~ ) /  ~(k lN  ' / ' )  = 1 - ~ c+ ' 

I~ = f du  (1 - e'U)u - '-~'  = e -''~'/2 
0 

I1" 

IX sin(Trix) F(IX) ' 
for I > I X > 0 ;  

(B.15) 

ik(x) Ikl" ( - P(k/NXI*)=I N ~1~̀  7q" (c+ + c _ ) R e ( J , )  1 - i s l g n ( k )  c+ c_ Im(J.)~ c + 7 c  R- - -~ ) /  ' (B.16) 

IX2 sin(Trix) F(IX - 1) ' 
for 2 > I X > I .  J~' = i du  (1 + iu - e'U)u -~-" = e - l r r M 2  

0 

The expressions for C and fl directly follow from these expansions. 

B.3. Some useful explicit expressions and expansions 

In this section we only quote the most useful results on stable laws. More information can be found 
in ref. [G2-G4].  

C - l i p .  I . . , , -- ,-  l / / x  The symmetrical laws L~.,o. One can always choose 3' = 0, C = 1 [since L#,~(x) = C L~,,t3(.~ )] 
and hence study the density L~.,o defined as 

oo 

L~,,o = ( 2 " / r )  - 1  J e 'kx-lkl" d k .  (B.17) 
-o¢ 

L2 o of course is identical to the Gaussian G, and L 1 o is the Cauchy distribution L 1 0 = l/1r(1 + X2). 
--L~,,o takes a finite value at the origin: L~,,o(0 ) = (Trix')-IF(1/IX), which becomes v e ~  large as IX ~ 0 .  
- The  (Cauchy) expansion around x = 0 reads 

x2k 
LIz,o(X) = ('7i']~) -1 2 (__)k ~ l  r ( ( 2 k  + 1) / ix) ,  (B.18) 

k=0 

the radius of convergence of which is zero for IX < 1 and infinite for 1 < IX < 2 
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- T h e  (Wlntner) expansion for large arguments is 

Lu,o(X) = (93") -1 2 (-)/~+' X-(/zA+I) k=~ k) f'(1 + k/z) sln(Tr/zk/2), (B 19) 

the leading term of which reads 

Lu,o(X ) = (rr)-ix ("+l)r(1 +/Z) sln(rr/z/2) (B 20) 

A detailed study of the behavlour of those properties in the (singular) limit/z = 0 can be found in ref 
[G4] 

The negative moments of L 0 read 

{x ") =/zF(v) cos(Try/2) (B.21) 

The asymmemcal laws L~, ± 1 Still choosing y = O, one can show that L 1 (which we shall denote 
simply by L~,) can be expressed as an inverse Laplace transform, 

d+lao 

1 f ,x c'~. L, , (x ) -  27rl d s e  , (B 22) 

with C' = C/cos(rr/z/2) This law has the support [0, +m[ for/Z < 1 and ] - %  +m[ for 1 </Z < 2 
N B A stretched exponential decay (Kohlrausch law) is thus obtained if the relaxation time density 

is an L stable law, 

? 
C't u I -1 e = j L  ( r )  d(r -1) (B23)  e- t / r  

L takes a particularly simple form for/Z = 1/2 or/Z = 1/3" 
- F o r / Z  = 1/2, 

C _c2/2r 
L1/2(X ) = {~)(X) V ~  X 3/2 e (B 24) 

( 8  lS the step function). This distribution has a simple physical interpretation: it is the limiting law of 
return times to the origin for a one-dimensional symmetrical random walk The nth return time % to 
the origin is typically of order n 2, and 

Prob[z -< 2rn/~rn 2 <- z + dz] ,.-TL--~ L1/2(z  ) dz (B.25) 

- F o r  /Z = 1/3, L1/3 IS a modified Bessel function of order 1/3 (see section 1 2 4  for a physical 
application, for x > 0, 

xL1 /3 ( x  ) = (~//'7T) sin(It/3) KI/3(/,/) , /,/= 2(2C/33/2x~/~) 3/2 (B 26) 



L~, (x) - C - -  

For small x, L~, 

xL~,(x) = [2~'(1 -/x)~] -1/2 exp( 
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For large x, the expansion of L, (x) reads, for/x < 1, 

- C ' ~  ~ F(1 + k/z) sin(¢rp~k) 
L ' ~ ( X ) = - - ( T / ' X ) - I  k=l ~ C(1 + k) 

Hence the leading behavlour for x large is, for/z < 1, 

2/zF(/z) Sln(Tr/.t/2) 
~X(l+~) 

exhibits an essenttal singularity, 

__ ( X#* ~1/(1-~) 

279 

(B.27) 

(B 28) 

(B 29) 

This behaviour controls the shape of the diffusion front in the random walk problems encountered in 
chs. 1 and 3. 

The negative moments of L~, read 

(x-V> = C '-~'" r(v/~,) / ,r(v) .  (B.30) 

Appendix C. Diffusion behaviour and diffusion front in the Matheron-de Marsily layered model 

In this appendix, some analytical results are denved for the diffusion behaviour and diffusion fronts 
of the layered model [Mat80] described in section 1.3.2, with particular emphasis on the different 
possible ensemble averages. This question has been the subject of recent investigations [Dou89a, 
Red89, Bou89f] (we are grateful to Redner for having drawn our attention to some of the points 
below). 

The velocity distribution will be taken to be white noise, 

(v) =o, ( v ( z ) v ( z ' ) )  = O-vS(Z-  z ' )  , 

and the thermal noise along Z will be neglected (it is a non-leading contribution to diffusion at large 
time, so we can set DII = 0). 

The motion along Z is a standard Brownian motion, 

t 

f Z,= ~7(t')dt', ~TtTIt,=2D±8(t-t'), Z t=2D±t ,  (C.1) 

and the position X t depends on both the "thermal history" (Zt,; t' <- t) and the environment (V(Z)). 
The beauty and simplicity of this model is that one has an explicit form for this dependence, 

t 

x t= f V[Zc]dt'. (C.2) 
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In taking averages, it will be necessary to separate independent variables in this expression. Defining 
nt(Z) as the number of times the Brownlan motion (Zc; t' < t) has visited position Z, 

t 

n,(Z) = f S(Z - Z,,) d t ' ,  (C.3) 

(C 2) can be cast m the convenient form 

X,[(Z,,); (V(Z)) l = J dZ n,(Z)V(Z) (C.4) 

/ -  

The thermal average of the position thus reads 

-~, = ( dZ nt(Z)V(Z) 
J 

(c  5) 

nt(Z ) is easily computed from the knowledge of the (Gausslan) probability distribution 

P±(Z, t) = (47rD±t) ,/2 exp(_Z2/4D±t) 

of the transverse Brownian motion One obtains 

i Izl n,(Z) = dt' P±(Z, t') - 4x/~D± 
0 

r(-½,  Z2/4D~t) , (C 6) 

where F ( - ½ ; x )  denotes the incomplete gamma funcUon (note that It IS slmply related to the error 
function) Thus 

+~ 

- - _  1 f t 
J X, 4x/-~D~ dZ  Izlr(- Z2/4D±t)V(Z) (C 7) 

m 

X, still depends on the environment (V(Z)) In particular, tt does not converge to zero at large ume for a 
given (V(Z)), only its average over environments (X,) is zero (for all times, since no global bias is 
present) ~ has a distribution over environments which is obviously a Gausslan of variance ((~,,)2) 
The latter can be calculated in closed form from (C 7), 

((~,)2) = ~rv f dZ [n,(Z-)l 2 = t r v D ~ l / 2 I t  3/2 , 

I= 1 f uZF(_l U2)2 4 -~r ,:, du = ~ ( V ~ -  1) 
0 

(c 8) 

The thermal average of the squared posmon is related to the correlation function nt(Z)n,(Z') as 

- f  
X~ = d Z  dZ '  V(Z)V(Z')nt(Z)nt(Z' ) , (C 9) 
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and its average IS also easily computed, 

(X--~) = o" v f dZ n,(Z) z 

t t '  

0 0 

i i '  dt" 4 t r v t 3 / 2 .  (C.10) 
= d¢ '  X/4 O (C - t") - 3 

0 0 

One concludes from these results that both {X~}-({X,}) 2= (X~) and ( X ~ ) -  ( (~)2)  behave 
anomalously as D-l/2t 3 / 2 •  at large time, but with different prefactors, 

(X~)- 4 tr v t3/2 (C lla) 
3 ' 

( X ~ - ( ~ ) 2 )  = -~(2-X/2) °v t 3/2 
- (C llb) 

(Note that only the average one, (X~), was obtained in the original paper [Mat80].__) It is expected (as 
would be confirmed by a calculation of its fluctuation) that the behaviour of X ~ -  (~)2 is indeed 
self-averaging and behaves as its average (C.11b) for a gtven environment (V(Z)) However, it follows 
from (C.11) that the distribution of the rescaled position X,/t 3/4 over thermal histories [1.e., P(X, t)] for 
a given sample does not obey a "generalized CLT"  at large ttme (t.e., does not reach a hmttform) Only 
the average front (P(X, t)) does, on which we now comment. 
* It is easily shown from (C.4) that X,, being an integral of V(Z),  has a distribution over samples for a 
fixed thermal history which is a Gausslan of variance 

Q = o- v f dZ nt(Z) 2 (C.12) 

This quantity has still a distribution over thermal histories. Computing its average (that is, (P(X, t))) 
requires the knowledge of the distribution of Q (or alternatively of the characteristic function e"°). We 
shall not attempt to calculate fully thxs distribution here, but rather make a conjecture on the tad of 
(P(X,  t)),  in the regime X>> t 3/4 PhyslcaUy, the main contributions to this tail is from walks which 
have visited a small number of layers, and thus for which Q is much larger than its average (since this 
quantity counts the number of at least doubly visited layers). Let us assume that the distribution of Q 
(over histories) behaves for Q >> Q as exp[-(Q/Q)~], where fl is some exponent The tall of (P(X, t)) 
is deduced from (C.12) by a saddle point estimate, 

f 2fl dQ exp[-(Q/Q) ~ -  XZ/Q]~exp[ - (X / (X2) ' / 2 )~] ,  ~ -  1 + fl 

It can be argued [Bou89f] (by estimating the weight of "confined" walks) that the distribution of Q is in 
fact Gausstan at large Q, i .e ,  fl =2. This suggests that the tall of (P(X, t)) for X ~ t  3/4 has the 
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markedly non-Gausstan behavlour exp[-(X/t3/4)4/3]. One observes that the value 6 = 1 / ( 1 -  v )=  4 
discussed through linear response arguments In section 5 3.1 and 5.3 2 is not obeyed; as pointed out at 
the end of section 5.3.1, this is not surprising in view of the existence of correlations up to the scale 
trv/DF3>> kT/F. The shape of the full scaling function associated with (P(X, t)), 

( P(X, t) )--~ t-3/4f(X/t3/4) , 

has been very recently Investigated numerically [Bou89f] and analytically [Dou90, Zum90]. Another 
open question on this model is whether the histogram of the position of a single walker for a given 
history and environment indeed coincide (when rescaled by t 3/4) with (P(X,  t)) ,  as ergodicity would 
suggest, or whether the model displays some kind of "ergodlclty breaking" 

Appendix D. Two theorems on electrical networks 

D 1 Derrtda's proof of  relatton (2.15) [G14] 

If one considers a random network (tr,1 is the conductance between site I and 1) and if each site is 
connected to the mass by a capacitance C, the time dependence of the potential V, on site t is given by 

dr, 
C ~ = ~ o-,,(V~ - V,) (D.1) 

1 

We see that this equation is the same as the master equation (2 1) for Pj So the properties of the two 
problems should be related. We are now going to see that the diffusion constant for the diffusion 
problem IS related to the conductivity of the random resistor network. 

(a) The dtffuston constant. One can define a diffusion constant D corresponding to the direction a 
by 

([x(t) .-~]2) ~ 2D t . (D.2) 

( ) means average over the starting points. 
We are now going to calculate D e for a periodic lattice in d dimensions with an elementary cell O 

containing l d sites with arbitrary hopping rates Wx~, in this cell. The master equation is 

dPx/dt = ~ Wxx'(P~' - Px),  (D.3) 
x f 

and the periodicity of the lattice means that d. 1 d arbitrary values of Wxx, are given and that 

Wxx, = W~+.t,x,+. t for any n E 7/a 

Because the lattice is periodic, it is convenient to introduce two quantities for each site x of the cell, 

Qx : E P~+.,, Rx = E (x + nl)Px+.Z 
n ii 
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These quantities satisfy the following equations" 

d d 
d~ Qx : ~ Wxx,(Ox, - Q x ) ,  d t  Rx = ~ Wxx,(R x, - Rx)  + ~ (x - x ' )Wxx ,O x, (D 4) 

x '  x '  x '  

Let us see how ( d / d t ) ( ( x .  a )  z)  can be expressed in terms of Qx and R~, 

_d dt ((x" a)2) = ~ (x" a)2 dPx - ~ (x" a)2 ~ W x x ' ( P x ' -  Px) 
x dt x x, 

= [ 2 ( x .  - x .   )Wx,xex + ( x ' .  , ,  - x .   )2W xl 
X,X ~ 

= ~] ~] [2(R x • a ) ( x ' . a  - x"  a)Wx,  x + ( x ' . a  - x"  a)2axWx,x] (D.5) 
xG~Q x '  

For long times, Qx and R x have a finite hmit, 

Qx --> 1/ l  d , R x ---> (1/ld)rx,  (D 6) 

where r x are soluUons of 

[Wxx,(rx, - rx) + (x - x')W~x,] = 0.  (D.7) 
x, 

So the diffusion constant D~ in the direction a is given by 

d 
2D~ = !im ~ ([x(t).  a]  2) 

1 2 
= ? Z ~] [ 2 ( r x ' O t ) ( x " a - x ' a ) W x ,  ~ + ( x ' . a - x ' a )  Wx,x]. (D.8) 

XEg~  X '  

We are now going to see that the conductivity is given by a very slmdar expression. 

(b)  The conductivity o f  a random reststor network.  Consider again a periodic lattice with a unit cell 
/2 of sxtes. All the conductances Crxx, in the unit cell are arbitrary and one has 

O'~x, = cr~+,l,~,+, z , n ~ Z d . 

Let us put two electrodes perpendicular to a direction a. Since the medium is periodnc, one expects a 
potenual V x which has the following form: 

V x = - t r .  x E  + ~b x , ¢'x = ~bx+,a. (D.9) 

One can define r~ by 4'x = r~. aE .  Then the conservation of current reads 

E ~x , (L ,  - L )  = 0 ,  
X' 
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which gives 

o-<<,(x' - x) + o-,,,(,-, - , - < ) = 0  
t t 

(D10)  

We see that the equation which determines r~ is the same as in the diffusion problem 
In a cube of I d sites, the current in direction oL is 

9 

(the factor 1/2 is due to the fact that each bond is counted twice) The current l~ per site is 

E ~ ~ [(x'" a -  x'a)2o'<,, + 2 ( r~ . a ) (x ' .  a - x . a ) o - , ] ,  
L = E ~ -  21 d ~ ( D l l )  

by definition of the conductivity cr We see that the expressions of D and ~ are identical (since r are 
given by the same equations) 

We have therefore shown that for any periodic lattice 

D = ~ if W~,,= o -  (D 12) 

Let us make two remarks concerning the vahdlty of this result. 
(i) It was obtained by assuming that Q~ ~ 1/l d and g x has a limit as t ~  ~ This is true only if there is 

no isolated cluster or site Therefore one should slightly modify this result in the case of percolation 
networks (see section 6 3 2 1) 

(n) The relation D = o- s has been derived for a periodic lattice of period I It is not obvious that the 
diffusion coefficients of the disordered medium can be obtained by taking D m the limit l ~  ~ because 
the two hmits t ~  and l ~  may not commute, see, however, the discussion in chapters 2 and 3 

D.2. The "path mtegral" representation o f  the conductance [Doy84, Gef87] 

Take a disordered lattice characterized by random hopping rates W,j = Wj, If one imposes a constant 
number of particles at sites A and B (N A and NB), a non-zero current I of particles has to be supphed 
(or taken away) at A If N A ~ N B, 

1 = - N  A ~ WA + ~ N W ,  A= ~ W,A(N ' - N~) 
l • l 

(D 13) 

Solving the master equation with NA, N a fixed corresponds, In the electrical language, to solving 
Klrchoff's rules with fixed potentials V A, V a I then corresponds to the current injected at A Now, if 
one calls TAB the total probablhty for a particle to leave site A and reach site B wtthout returning to A 
at intermediate times and QA the total probability for a particle to leave A and come back to A wlthottt 
hitting B at intermediate times, one has 

TAB + QA = 1 (D 14) 
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The probability to leave A per umt time is clearly E, WA,. The current I may thus also be computed as 

l l 

Since the hopping rates are symmetrical, the total probability to hop from A to B is equal to that of 
hopping from B to A; thus 

E WA, TAB= ~] W,,TBA. (D 16) 
t t 

Otherwise stated, if NA = NB, an equilibrium state with N, = N A = N B for all t can be reached and I = 0 
From (D.14) and (D.15), (D.16) one derives 

I=(NA--NB)TAB(--~WA,) ,  (D 17) 

which, upon the identification W,j = o'j, V, = NI, yields the conductance LAB between A and B as 

,~AB = ( ~  WA,)TAB = (~a WB,)TBA (D.18) 

Note that, in other words, "~AB = GBA -- GAA + GAB -- GBB' where Gxy = P(x, y, E = 0) is the Green 
function of the master equation (D.3). 

Hilfer and Blumen [Hi188] have furthermore shown that a simple relation exists between TAB and 
some ttme constants in the diffusion problem. Namely, if one calls tAA the mean first return time to A 
and tAB the mean first passage time at B starting at A, they have shown that 

TAB = t~A/(~Aa + tBA) 

Appendix E. Fluctuation-dissipation theorem in the potential case 

If the Brownian particle follows an overdamped Langevm equation in which the force F is the 
gradient of some potential, then one can prove a fluctuation-dissipation theorem Its formulation 
depends on the nature_ of the potential: either it grows sufficiently__fast for large distances to localize the 

particle [i e., lim,__,~ x2(t) is finite] or the particle can escape and x2(t) grows without bounds, usually as 
Dt. The problem dealt with in this appendix is to obtain the response of the particle to a weak 
oscillating external field e fe  1°~. Let us illustrate how this can be reached on the example of a 
one-dimensional "confining" potential; the calculations are easily transposed to higher dimensions or 
non-confining potentials (see below). 

We thus consider a particle in equilibrium evolving according to yic = - U'(x) + ~7(t) + e fe  "°t. The 
associated Fokker-Planck equation for P can be transformed into a Schrodlnger equation (see, e .g ,  
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ref. [G5] and section 3 3 5), which is expanded in powers of e, ~ = ~0 + egtl e'°~', with 

l/to(X ) = V~o(X)  = Z -1 e -U/2~r  

whmh is the ground state of 

1 
H =  -Doa~ + (4Doy2) - lV ' (x )  2 -  ~ U"(X) , 

k T  
D o - 

Y 

The equation for qs 1 reads 

i0)q/l = - HqS 1 - ( 2f /y  )O ~ ~o 

Introducing H = r, ~ E~ [a ) ( a I, I 0 > - gt0, E0 = 0 and ~1 = E ~ ct~lfl ), one obtains 

c. = -2f(/31Ox[0 )/3,(E~ + i0)). 

Noticing that 2DoO x = Ix, H], this transforms into 

f Ea t2f el~t (8x(0)))= dXXPl(X)=(DoY)-' E~ E +l-----~l(alx[0)  , 

or, defining the susceptibility X(0)) as (8x(0))) = X(0))f e TM, one has, using DoT = kT, 

E o t  
krx(0)) = E I<  lxlO)l = 

E,~ a + 10) 

The zero-frequency hmlt takes a very simple form (using E~ [ a ) ( a [  = 1), 

f dx x2po(x) 
x ( o )  = k r  ' 

which is the standard fluctuation-dissipation theorem 

Remark. If U(x) is a harmomc potential, 2U(x) = kTo(x/l)  2, then one has an exphot  formula for 
X(0)) at all frequencies, 

12 1 l 2 
) " J ' ~  - -  

X(0)) - k T  (To~T) 2 + 10)'1" Do 

Following the same hnes, one may prove that in the case of a non-confining potential, the mobility, 
defined as m(0))= 0)(8x(0))) /f  e ' " ,  has a zero-frequency limit given by the Einstein relation, 

m(w =0) = D / k T  , 

with D # D O the diffusion constant modified by the force field. 
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